抽象车辆计数对于有效的道路计划和交通管理至关重要。尽管深度学习技术的发展已经取得了重大进步,但当前的计数模型依赖于大规模参数和大量的计算资源,从而限制了其实际应用。此外,这些方法通常在大型集中数据集上进行训练,这可能导致资源约束设备的效率低下。此外,隐私保护不足会带来个人信息泄漏的潜在风险。为了解决这些问题,我们在本文中引入了一个轻量级计数网络,隐私感知的聚合网络(Panet)。在Panet中,构建了一个金字塔功能增强模块,以汇总多尺度信息并增强关键表示形式,同时还优化了模型的渠道输出以降低计算复杂性。此外,还实施了一个联合学习框架来分发计算负载和保护用户隐私。对广泛计数基准的实验结果证明了锅et的效率和准确性。该代码可在https://github.com/sdut-jacheng/panet上找到。
主要关键词