定量敏感性映射(QSM)已广泛应用于神经变性和铁沉积的临床诊断,而QSM重建中仍然存在偶极反转问题。最近,提出了深度学习方法来解决这个问题。但是,这些方法中的大多数是需要成对输入阶段和地面真相对的监督方法。在不使用地面实际情况的情况下训练所有分辨率的模型仍然是一个挑战,而仅使用一个分辨率数据。为了解决这个问题,我们提出了一种基于形态的自我监督QSM深度学习方法。它由形态学QSM构建器组成,可以使QSM对采样分辨率的依赖性以及有效减少伪像并有效节省训练时间的形态学损失。所提出的方法可以在人类数据和动物数据上重建任意分辨率QSM,而不管该分辨率是更高还是低于训练集,这表现优于先前最佳的无监督方法。此外,对于先前无监督学习方法中使用的周期梯度损失,形态损失还将训练时间减少了22%。实验结果和临床验证表明,该提出的方法测量具有任意分辨率的精确QSM。,它在无监督的深度学习方法和竞争性绩效中取得了最新的结果,相对于最佳的传统方法。
主要关键词