大多数自然领域可以通过多种方式表示:我们可以根据其营养内容或社会角色对食物进行分类,动物的分类学群体或其生态壁ni,以及乐器根据其分类学cate-cate-gore-gore或社会用途。对人类分类进行建模的先前方法在很大程度上忽略了交叉分类的问题,专注于学习一个单一的类别系统,这些类别可以解释所有功能。跨类别提出了一个困难的概率:我们如何在不首先知道该类别要解释的情况下推断类别?我们提出了一个新型模型,该模型表明人类跨类别是关于多个类别系统及其解释的特征的联合推断的结果。我们还为交叉分类行为形式化了两个常见的替代解释:第一个特征和对象 - 第一个方法。第一种方法表明,交叉分类是注意力程序的结果,其中特征是通过注意机制选择的,并且类别是第二个。对象 - 第一个方法表明,跨属性是重复的,顺序解释特征的连续性尝试,其中类别是第一个派生的,然后重新解释的特征。我们提出了两组模拟和实验,以测试模型对人类分类的预测。2011 Elsevier B.V.保留所有权利。我们发现,基于共同推论的方法为人类分类行为提供了最佳拟合,我们建议对人类类别学习的完整说明需要纳入类似于这些能力的东西。
主要关键词