近年来,计算机视觉,机器人技术,机器学习和数据科学一直是一些为技术取得重大进展做出贡献的关键领域。任何在上述领域看论文或书籍的人都将被一个奇怪的术语所付诸实践,其中涉及异国情调的术语,例如内核PCA,脊回归,套索回归,支持向量机(SVM),Lagrange乘数,KKT条件等。支持向量机可以追赶牛以某种超级套索抓住他们吗?不!,但是人们会很快发现,在术语后面,总是带有新的场(也许是为了使局外人远离俱乐部),这是许多“经典”线性代数和优化理论中的技术。是主要的挑战:为了了解和使用机器学习,计算机视觉等的工具,需要在线性代数和优化理论中具有企业背景。老实说,还应包括一些概率理论和统计数据,但我们已经有足够的能力与之抗衡。许多有关机器学习的书籍与上述问题。如果一个人不了解拉格朗日二元框架,那么一个人如何忍受脊回归问题的双重变量是什么?同样,如何在不了解拉格朗日框架的情况下讨论SVM的双重公式?简单的出路是将这些困难范围扫到地毯下。如果只是我们上面提到的技术的消费者,那么食谱食谱方法可能就足够了。这些包括:但是,这种方法对真正想进行认真研究并做出重要贡献的人不起作用。要这样做,我们认为一个人必须具有线性代数和优化理论的坚实背景。这是一个问题,因为这意味着要投入大量时间和精力研究这些领域,但我们认为毅力将得到充分的回报。我们的主要目标是介绍线性代数和优化理论的基础,请注意机器学习,机器人技术和计算机视觉的应用。这项工作由两卷组成,第一卷是线性代数,第二个是一种优化理论和应用,尤其是用于机器学习。这首卷涵盖了“经典”线性代数,直至主要构成和约旦形式。除了涵盖标准主题外,我们还讨论了一些对应用程序重要的主题。
主要关键词