Loading...
机构名称:
¥ 1.0

ai基础模型[1]封装了一个概念,其中AI模型以无监督或自制的方式进行预培训,例如,以一项基本任务进行了基本任务,例如,在句子中预测下一个单词,在一定数据中,训练有素的模型随后是一个句子的基础,以示例为基础,以示例为基础,以示例为基础。本质上,他们不是狭窄的专家,而是通才。尽管这些模型的概念通过大语言模型(LLM)(例如那些基础chatgpt [2])赢得了知名度,但原则上,可以在各种方式上使用类似的技术,例如,图像,音频,视频,非结构化的网格等。鉴于实验磁性局限融合设备中不同模态的大量数据以及实验融合科学家需要执行的各种任务需要执行的多种任务,因此出现了一个自然的问题,即是否可以为实验融合数据创建AI基础模型以增强和加速融合科学。本文试图在概念层面上解释如何创建这些基础模型以及如何有效地用于实验融合设置。

AI实验融合任务的基础模型

AI实验融合任务的基础模型PDF文件第1页

AI实验融合任务的基础模型PDF文件第2页

AI实验融合任务的基础模型PDF文件第3页

AI实验融合任务的基础模型PDF文件第4页

AI实验融合任务的基础模型PDF文件第5页