背景循证医学(EBM)是现代临床实践的基础,要求临床医生不断更新其知识并在患者护理中运用最佳临床证据。由于医学研究的迅速发展,EBM的实践面临挑战,从而导致临床医生的信息超负荷。人工智能(AI)的整合,特别是生成的大语言模型(LLMS),为管理这种复杂性提供了有希望的解决方案。方法这项研究涉及在各种专业中进行现实世界中临床病例的策划,将其转换为.json文件进行分析。llms,包括Chatgpt 3.5和4,Gemini Pro等专有模型,以及诸如Llama V2和Mixtral-8x7b之类的开源模型。这些模型配备了从病例文件中检索信息的工具,并做出类似于临床医生在现实世界中必须运作的临床决策。根据最终答案的正确性,明智地使用工具,对准则的合规性以及对幻觉的抵抗,对模型性能进行了评估。结果GPT-4在临床环境中最有能力进行自主操作 - 通常在订购相关研究并符合临床指南方面更有效。根据模型能够处理复杂指南和诊断细微差别的模型能力观察到限制。检索增强生成提出了针对患者和医疗保健系统量身定制的建议。可以得出结论LLM作为循证医学的自治实践者的功能。可以利用其使用工具的能力与现实世界中医疗保健系统的基础结构进行互动,并以指导方式执行患者管理的任务。及时的工程可能有助于进一步提高这种潜力并改变临床医生和患者的医疗保健。
主要关键词