人工神经网络(ANN)的连通性与在生物神经网络(BNN)中观察到的连通性不同。实际大脑的接线可以帮助改善ANNS体系结构吗?我们可以从ANN中了解哪些网络功能在解决任务时支持大脑中的计算?在连通性的中间/宏观级别上,ANN的体系结构经过精心设计,这些设计决策在许多最近的绩效改进中具有至关重要的重要性。另一方面,BNN在所有尺度上都表现出复杂的新兴连通性模式。在个人层面上,BNNS连接性是由脑发育和可塑性过程引起的,而在物种层面上,在进化过程中的自适应重新构造也起着主要作用,可以塑造连通性。近年来已经确定了无处不在的大脑连接性特征,但是它们在大脑执行具体计算的能力中的作用仍然很少了解。 计算神经科学研究仅揭示了特定的大脑连接性特征对抽象动力学特性的影响,尽管实际上几乎没有探索真实的大脑网络拓扑对机器学习或认知任务的影响。 在这里,我们提出了一项跨物种研究,采用混合方法整合了真实的大脑连接组和生物回声状态网络,我们用来求解具体的内存任务,从而使我们能够探究在求解任务解决方面的真实大脑连接模式的潜在计算模拟。 我们还提出了一个框架Bio2Art,以映射和扩展可以集成到经常性ANN中的真实连接组。无处不在的大脑连接性特征,但是它们在大脑执行具体计算的能力中的作用仍然很少了解。计算神经科学研究仅揭示了特定的大脑连接性特征对抽象动力学特性的影响,尽管实际上几乎没有探索真实的大脑网络拓扑对机器学习或认知任务的影响。在这里,我们提出了一项跨物种研究,采用混合方法整合了真实的大脑连接组和生物回声状态网络,我们用来求解具体的内存任务,从而使我们能够探究在求解任务解决方面的真实大脑连接模式的潜在计算模拟。我们还提出了一个框架Bio2Art,以映射和扩展可以集成到经常性ANN中的真实连接组。我们发现在物种和任务之间保持一致的结果,表明,如果允许最小的随机性和连接的多样性,则具有生物学启发的网络以及经典的回声状态网络的性能以及经典的回声状态网络。这种方法还使我们能够表明核次间连通模式多样性的重要性,强调了决定神经网络连通性的随机过程的重要性。
主要关键词