Loading...
机构名称:
¥ 4.0

电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。

VCSEL Day 2024

VCSEL Day 2024PDF文件第1页

VCSEL Day 2024PDF文件第2页

VCSEL Day 2024PDF文件第3页

VCSEL Day 2024PDF文件第4页

VCSEL Day 2024PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2024 年
¥5.0
2025 年
¥7.0
2024 年
¥1.0
2024 年
¥2.0
1900 年
¥2.0
2025 年
¥3.0
2025 年
¥1.0
2024 年
¥3.0
2025 年
¥1.0
2024 年
¥5.0
2025 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥4.0
2025 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2024 年
¥1.0
2024 年
¥9.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0