研究表明,基于静息状态功能磁共振成像(fMRI)数据,随机SVM群集方法具有协助ASD辅助诊断的潜力。12研究人员使用自闭症脑成像数据交换(ABIDE)数据集中的脑成像数据来识别ASD。此处使用了带有反向传播算法的多层感知器。13论文讨论了移动自闭症风险评估工具。为移动设备设计,该计划可早日确定有自闭症谱系状况的风险。他们使用二进制萤火虫算法,其精度为91-92%。14研究人员使用众包获取信息。他们收集了许多自闭症和多动症患者以及正常成长的人的临床测试和行为观察。他们使用的精度为60至90%的SVM算法。15这些研究使用了精度为89%的SVM随机算法。16-18研究提供了一种机器学习方法来预测任何年龄段的自闭症症状。研究
主要关键词