Loading...
机构名称:
¥ 1.0

摘要 - 在这项研究中,我们探讨了使用频谱图代表了用于评估神经退化性疾病的手写信号,包括42个健康对照(CTL),35名患有帕金森氏病的受试者(PD),21例患有阿尔茨海默氏病(AD)和15例患有帕克森病的疾病模仿(PDM)。我们使用基于多通道的固定尺寸和基于框架的频谱图应用了CNN和CNN-BLSTM模型进行二进制分类。我们的结果表明,手写任务和频谱渠道组合会显着影响分类性能。AD与CTL的F1得分最高(89.8%),而PD与CTL达到74.5%,PD与PDM的得分为77.97%。CNN始终优于CNN-BlstM。测试了不同的滑动窗口长度,以构建基于框架的频谱图。一个1秒的窗口最适合AD,更长的Windows改进的PD分类,并且窗口长度对PD与PDM的影响很小。索引项 - 手写,神经退行性疾病,固定尺寸频谱图,基于框架的频谱图,通道。

使用框架级手写嵌入

使用框架级手写嵌入PDF文件第1页

使用框架级手写嵌入PDF文件第2页

使用框架级手写嵌入PDF文件第3页

使用框架级手写嵌入PDF文件第4页

使用框架级手写嵌入PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2022 年
¥3.0
2024 年
¥2.0
2024 年
¥1.0
2023 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥3.0