Loading...
机构名称:
¥ 1.0

在金属中,可以通过可见的波长光激发荷载体,以形成振荡和费米水平附近的内映射,对应于电子的等离子体振荡。一旦激发,由于金属的有限程度,将等离子局部在界面上局部,形成局部的表面等离子体共振(LSPRS),或者沿延伸的界面作为表面等离子体plason Polaritons(spps)沿延伸界面。[1,2]等离子体的领域旨在精确地在纳米级的磁光,并具有有希望的应用,包括亚波伦长波导,[3,4]纳米antenennas,[5]超镜头,[6]亚波长度成像,[7] Nano-civillely,[7] Nano-civillery,[8,8,9]和生物体。[10]控制这种激发需要考虑使用的材料和所形成的几何形状。寻找可能充当等离子应用可行候选的新金属或掺杂的半导管仍然是一个重大问题。[11]在费米水平附近填充的状态贡献了能够对等离子体振荡进行的电子,而在费米水平以上的空状态则被内标转换填充。频带间的转变并不有助于等离子体的振荡,而通过光子吸收激发它们是一种损失机制。因此,完美的等离子金属将在费米水平附近的电子能够在材料中传播,并具有低标记损耗且无带间跃迁的材料。高电导率是一个有益的特征,因为它表明电子在材料中传播时,即由于诱导电子的电子 - 电子散射而导致的低损失。[1]但是,这不是一个足够的标准,因为弱电子 - 电子散射并不排除光线间过渡吸收的光的可能性,而不是令人兴奋的沿金属 - 介电界面传播电子模式。[12]

通过高通量机学习发现新的等离子金属

通过高通量机学习发现新的等离子金属PDF文件第1页

通过高通量机学习发现新的等离子金属PDF文件第2页

通过高通量机学习发现新的等离子金属PDF文件第3页

通过高通量机学习发现新的等离子金属PDF文件第4页

通过高通量机学习发现新的等离子金属PDF文件第5页