我们研究了用于航空航天应用的不同纤维取向的单向增强碳-碳复合材料的疲劳开裂行为。通过数字图像相关 (DIC),现场记录全场位移,捕捉循环载荷过程中应变局部化的演变。DIC 位移场进一步用于通过正交各向异性本构关系的回归分析确定裂纹驱动力。显微计算机断层扫描 (micro-CT) 扫描揭示了损伤微观机制的竞争性质,例如孔隙聚结、纤维桥接等,用于推进裂纹。断裂表面的电子显微镜检查揭示了广泛的纤维/基质界面脱粘和纤维拔出,这主要是对抗循环开裂的影响。在足够的进展后,除非施加的载荷进一步增加,否则循环裂纹扩展本质上是自停止的。这种行为的起源归因于:(a)由于复合材料弹性模量不断下降导致驱动力降低;(b)由于尾流中普遍的纤维桥接和拉出导致的阻力牵引导致损伤阻抗增强。