使用Amazon CloudWatch Metrics

在这篇文章中,我们探讨了如何使用Amazon CloudWatch指标,警报和仪表板监视和管理Amazon Bedrock批处理推理作业,以优化性能,成本和操作效率。

来源:亚马逊云科技 _机器学习
随着组织扩展其对生成AI的使用,许多工作负载需要具有成本效益的批量处理,而不是实时响应。亚马逊基岩批处理推断通过使大型数据集的批量处理能够以可预测的性能进行处理,从而解决了这一需求,其成本比按需推理低50%。 This makes it ideal for tasks such as historical data analysis, large-scale text summarization, and background processing workloads.In this post, we explore how to monitor and manage Amazon Bedrock batch inference jobs using Amazon CloudWatch metrics, alarms, and dashboards to optimize performance, cost, and operational efficiency.New features in Amazon Bedrock batch inferenceBatch inference in Amazon Bedrock is constantly evolving, and recent updates bring significant增强性能,灵活性和成本透明度:扩展的模型支持 - 批次推断现在支持其他模型系列,包括Anthropic的Claude Sonnet 4和Openai Oss模型。对于最新的列表,请参阅批处理推理的受支持区域和模型。增强功能 - 对新的人类克劳德(Claude)和OpenAi GPT OSS模型的优化优化,现在与以前的型号相比提供了更高的批次吞吐量,与以前的型号相比,可提供更高的批次吞吐量,可帮助您更快地处理大型工作。解决方案。 This capability provides AWS account-level visibility into job progress, making it straightforward to manage large-scale workloads.Use cases for batch inferenceAWS recommends using batch inference in the following use cases:Jobs are not time-sensitive and can tolerate minutes to hours of delayProcessing is periodic, such as daily or weekly summarization of large datasets (news, reports, transcripts)Bulk or historical data needs to be analyzed, such as archives of call中心笔录,电子邮件或cha