How physics explains your cat’s mysterious moves: A playful look at feline motion
在动物世界中,猫的名气是其他任何物种都无法比拟的。它们统治着社交媒体,用它们古怪的行为吸引了数百万人。由于埃尔温·薛定谔著名的“薛定谔的猫”思想实验,猫甚至在物理学界占有一席之地。最近,一项新的研究增加了这一研究[…]文章《物理学如何解释猫的神秘动作:猫科动物运动的俏皮观察》首次出现在 Knowridge Science Report 上。
Cosmos launches global competition to find ways to teach kids quantum science
量子科学对社会的未来至关重要,联合国已宣布 2025 年为“国际量子科学技术年”。它纪念了薛定谔方程 100 周年——通常被认为是量子力学诞生的关键发展。联合国教育机构教科文组织表示,为期一年的全球倡议 […]
本文是我写的关于量子谐振子的文章系列的第 5 部分。如果你还没有读过第 1 部分:量子谐振子简介、第 2 部分:带有无量纲项的薛定谔方程、第 3 部分:渐近解和第 4 部分:薛定谔方程的级数解,那么你就无法理解我将在本文中解释的内容,因此阅读这些文章是必须的。在本文中,我将向你介绍 Hermite 多项式。虽然我不会讨论它的全部细节和规范化,因为它是一个高级数学主题并且超出了本文的范围,但你可以直接在网上搜索它,那里有一些关于它的示例资源。在继续阅读之前,请记住,当我们在上一篇文章中介绍 H 时,我们将其声明为一个未知变量。在本文中,我们将尝试对此进行更多了解。因此,如果您在我上一篇文章的公式
The Quantum Superposition Theorem: A Mathematical Approach
在我之前的文章中,我主要写了关于量子叠加的理论方面。量子叠加是主要的基石理论之一,它为量子物理学提供了奇特之处,并帮助我们解决量子隧穿等关键问题。在我的上一篇文章中,我写了关于正交定理的内容,这是理解量子叠加背后的数学的必要先决条件。除此之外,还需要具备概率知识的初步微积分知识才能理解下面的文字,因为它可能看起来并不像你在纪录片中看到的那样花哨,相反,如果你理解了文字,那么它会更迷人,并支持这一说法:“事实比小说更奇怪”。所以,事不宜迟,让我们深入研究它……为了制定叠加原理,首先我们必须考虑一些潜在的 V(x),并且对于这个潜在的薛定谔方程已经得到解决。这产生了许多波函数 𝜓ᵢ(x) 及其对应
今天的文章将更加数学化,因为本文将涉及数学架构和理论构成要素,如叠加定理和微扰定理。所以,事不宜迟,让我们开始吧……与往常一样,我们将从考虑开始,因为我们都知道物理学充满了考虑!!!因此,考虑两个波函数𝝍ₙ 和 𝝍ₖ。两者都满足某个势能 V(x) 的薛定谔方程。现在,如果它们的能量分别为 Eₙ 和 Eₖ,则正交性定理指出 ∫ 𝝍ₖ*(x) 𝝍ₙ(x) dx =0 (Eₙ ≠ Eₖ) (1) 这里,积分的极限是系统的极限,𝝍ₖ* 是 𝝍ₖ 的虚部。好了,就是这样...这是正交性定理的主要陈述。但我们在这里也要推导它......所以让我们完成这个任务......正如我之前所说,上述波函数遵循薛定谔