RNN关键词检索结果

torch 时间序列继续:首次尝试多步预测

torch time series continued: A first go at multi-step prediction

我们继续探索使用 torch 进行时间序列预测,转向为多步预测设计的架构。在这里,我们通过多层感知器 (MLP) 增强了“主力 RNN”,以推断未来的多个时间步。

使用 torch 进行入门时间序列预测

Introductory time-series forecasting with torch

这篇文章介绍了使用 torch 进行时间序列预测。核心主题是数据输入和 RNN(GRU/LSTM)的实际使用。即将发布的文章将以此为基础,并介绍越来越复杂的架构。

理解 SoTA 语言模型 (BERT、RoBERTA、ALBERT、ELECTRA)

Understanding SoTA Language Models (BERT, RoBERTA, ALBERT, ELECTRA)

大家好,现在有大量的语言模型!其中许多都有自己独特的学习“自监督”语言表示的方式,可供其他下游任务使用。在本文中,我决定总结当前的趋势并分享一些关键见解,以将所有这些新方法粘合在一起。😃(幻灯片来源:Delvin 等人,斯坦福 CS224n)问题:上下文无关/原子词表示我们在上一篇文章中从上下文无关方法开始,例如 word2vec、GloVE 嵌入。这些方法的缺点是它们不考虑句法上下文。例如“开立银行账户”与“在河岸上”。单词 bank 的含义取决于单词所处的上下文。解决方案 #1:上下文单词表示借助 ELMo,社区开始构建前向(从左到右)和后向(从右到左)序列语言模型,并使用从这两个模型(连

循环神经网络:在 Pytorch 中构建 GRU 单元 VS LSTM 单元

Recurrent Neural Networks: building GRU cells VS LSTM cells in Pytorch

RNN 相对于 transformer 有哪些优势?何时使用 GRU 而不是 LSTM?GRU 的方程式到底是什么意思?如何在 Pytorch 中构建 GRU 单元?