Fast and accurate zero-shot forecasting with Chronos-Bolt and AutoGluon
Amazon SageMaker 客户可以通过 AutoGluon-TimeSeries 和 Amazon SageMaker JumpStart 使用 Chronos 模型。在这篇文章中,我们介绍了 Chronos-Bolt,这是我们最新的预测 FM,已集成到 AutoGluon-TimeSeries 中。
Understanding prompt engineering: Unlock the creative potential of Stability AI models on AWS
Stability AI 在 Amazon SageMaker JumpStart 上最新推出的 Stable Diffusion 3.5 Large (SD3.5L) 通过生成更多样化的输出并紧密遵循用户提示来增强图像生成、人体解剖渲染和排版,使其成为对其前身的重大升级。在这篇文章中,我们将探索可以增强这些模型性能的高级提示工程技术,并通过文本到图像的转换促进引人注目的图像的创建。
Best practices for prompt engineering with Meta Llama 3 for Text-to-SQL use cases
在本文中,我们将探索一种解决方案,该解决方案使用向量引擎 ChromaDB 和 Meta Llama 3(托管在 SageMaker JumpStart 上的公开基础模型)来实现文本到 SQL 用例。我们分享了 Meta Llama 3 的简要历史、使用 Meta Llama 3 模型进行快速工程的最佳实践,以及使用少样本提示和 RAG 提取存储在 ChromaDB 中的相关模式的架构模式。
AWS AI chips deliver high performance and low cost for Llama 3.1 models on AWS
今天,我们很高兴地宣布 AWS Trainium 和 AWS Inferentia 支持 Llama 3.1 模型的微调和推理。Llama 3.1 系列多语言大型语言模型 (LLM) 是一组预先训练和指令调整的生成模型,大小分别为 8B、70B 和 405B。在上一篇文章中,我们介绍了如何在 Amazon SageMaker JumpStart 中基于 AWS Trainium 和 Inferentia 的实例上部署 Llama 3 模型。在这篇文章中,我们概述了如何开始在 AWS AI 芯片上微调和部署 Llama 3.1 系列模型,以实现其性价比优势。
Use Llama 3.1 405B for synthetic data generation and distillation to fine-tune smaller models
今天,我们很高兴地宣布 Llama 3.1 405B 模型已在 Amazon SageMaker JumpStart 和 Amazon Bedrock 上推出预览版。 Llama 3.1 模型是一组先进的预训练和指导微调的生成式人工智能 (AI) 模型,大小分别为 8B、70B 和 405B。Amazon SageMaker JumpStart 是一个机器学习 (ML) 中心,提供对算法、模型和 ML 解决方案的访问,以便您可以快速开始使用 ML。Amazon Bedrock 提供了一种使用 Meta Llama 模型构建和扩展生成式 AI 应用程序的简单方法,只需一个 API 即可。
Generate unique images by fine-tuning Stable Diffusion XL with Amazon SageMaker
Stability AI 的 Stable Diffusion XL 是一种高质量的文本到图像深度学习模型,可让您生成各种风格的专业图像。托管版本的 Stable Diffusion XL 已在 Amazon SageMaker JumpStart 上提供给您(请参阅在 Amazon SageMaker Studio 中将 Stable Diffusion XL 与 Amazon SageMaker JumpStart 结合使用)和 Amazon Bedrock(请参阅 […]