Upside down, a cat's still a cat: Evolving image recognition with Geometric Deep Learning
在关于组等变卷积神经网络 (GCNN) 的系列文章的第一篇中,我们将介绍主要参与者 — 组 — 和概念(等变)。通过 GCNN,我们终于重新讨论了几何深度学习这一主题,这是一种原则性、数学驱动的神经网络方法,其范围和影响力一直在不断扩大。
Stanford AI Lab Papers and Talks at NeurIPS 2021
第三十五届神经信息处理系统会议(NeurIPS)2021 将于 12 月 6 日至 14 日以线上方式举办。我们很高兴与大家分享 SAIL 在主会议、数据集和基准测试轨道以及各种研讨会上展示的所有工作,您可以在下面找到论文、视频和博客的链接。我们 SAIL 社区中的一些成员还担任 12 月 13 日至 14 日举行的几场激动人心的研讨会的共同组织者,所以我们希望您能关注它们!欢迎直接联系联系作者和研讨会组织者,以了解斯坦福大学正在进行的工作!主会议通过将表示解码为输入来提高神经网络的组合性作者:Mike Wu、Noah Goodman、Stefano Ermon联系方式:wumike@stan
Stanford AI Lab Papers and Talks at NeurIPS 2021
第三十五届神经信息处理系统会议(NeurIPS)2021 将于 12 月 6 日至 14 日以线上方式举办。我们很高兴与大家分享 SAIL 在主会议、数据集和基准测试轨道以及各种研讨会上展示的所有工作,您可以在下面找到论文、视频和博客的链接。我们 SAIL 社区的一些成员还担任 12 月 13 日至 14 日举行的几场激动人心的研讨会的共同组织者,所以我们希望您能关注它们!欢迎直接联系联系作者和研讨会组织者,以了解斯坦福大学正在进行的工作!主会议通过将表示解码为输入来提高神经网络的组合性作者:Mike Wu、Noah Goodman、Stefano Ermon联系方式:wumike@stanf
Speech Recognition: a review of the different deep learning approaches
探索最流行的深度学习架构以执行自动语音识别 (ASR)。从循环神经网络到卷积和 transformers。
Transformers, Explained: Understand the Model Behind GPT-3, BERT, and T5
你知道那句话吗?当你有一把锤子时,所有东西看起来都像钉子。在机器学习中,我们似乎真的发现了一把神奇的锤子,实际上,所有东西都是钉子,它们被称为 Transformers。Transformers 是一种可以设计用于翻译文本、写诗和专栏文章,甚至生成计算机代码的模型。事实上,我在 daleonai.com 上写的很多令人惊叹的研究都是基于 Transformers 构建的,比如 AlphaFold 2,这是一个根据蛋白质基因序列预测蛋白质结构的模型,以及强大的自然语言处理 (NLP) 模型,如 GPT-3、BERT、T5、Switch、Meena 等。你可能会说它们已经超出了……呃,算了吧。如果
An overview of Unet architectures for semantic segmentation and biomedical image segmentation
了解有关图像分割中广泛使用的最著名的卷积神经网络架构之一的所有信息。
Best deep CNN architectures and their principles: from AlexNet to EfficientNet
卷积神经网络如何工作?设计一个 CNN 架构背后的原理是什么?我们是如何从 AlexNet 转向 EfficientNet 的?
In-layer normalization techniques for training very deep neural networks
我们如何有效地训练非常深的神经网络架构?最好的层内规范化选项是什么?我们收集了您需要的有关 transformer、循环神经网络、卷积神经网络中规范化的所有信息。
Recurrent neural networks: building a custom LSTM cell
您是否有兴趣了解循环网络如何在后台处理序列?这就是本文的全部内容。我们将检查并构建我们自己的自定义 LSTM 模型。此外,我们对循环模块和卷积模块进行了一些比较,以最大限度地加深我们的理解。
摘要:神经网络(NN)擅长解决监督学习领域的一些复杂的非线性问题。这些网络的一个突出应用是图像分类。过去几十年的大量改进提高了这些图像分类器的能力。然而,神经网络仍然是解决图像分类和其他复杂任务的黑匣子。进行的许多实验研究了神经网络如何解决这些复杂的问题。本文拆解了特定材料分类器的神经网络解决方案,结合了卷积层。使用多种技术来研究该问题的解决方案。这些技术专门关注哪些像素对神经网络做出的决策有贡献,以及每个神经元对决策的贡献。本次调查的目的是了解神经网络的决策过程,并利用这些知识对材料分类算法提出改进建议。
摘要:神经网络(NN)擅长解决监督学习领域的一些复杂的非线性问题。这些网络的一个突出应用是图像分类。过去几十年的大量改进提高了这些图像分类器的能力。然而,神经网络仍然是解决图像分类和其他复杂任务的黑匣子。进行的许多实验研究了神经网络如何解决这些复杂的问题。本文拆解了特定材料分类器的神经网络解决方案,结合了卷积层。使用多种技术来研究该问题的解决方案。这些技术专门关注哪些像素对神经网络做出的决策有贡献,以及每个神经元对决策的贡献。本次调查的目的是了解神经网络的决策过程,并利用这些知识对材料分类算法提出改进建议。
FNN-VAE for noisy time series forecasting
在这个关于使用假最近邻 (FNN) 损失进行预测的迷你系列的最后一部分中,我们用卷积 VAE 替换了上一篇文章中的 LSTM 自动编码器,从而实现了相同的预测性能,但训练时间明显缩短。此外,我们发现,当底层确定性过程被大量噪声所掩盖时,FNN 正则化会大有帮助。
Review : Stanford's Online Artificial Intelligence Courses - Deep Learning and Machine Learning
你好!我已经入读斯坦福大学并在网上学习他们的课程。以下是我目前所学课程的一些看法。CS224n - 自然语言处理与深度学习 (Manning 教授)难度:4/5 (中等)预期内容:了解应用于 NLP 的最先进的 (SoTA) 深度学习技术。关键主题:问答文本摘要词性标记序列到序列模型Transformers为您提供了NLP发展方向的非常好的概述,家庭作业很有挑战性,但允许您实现最新的神经架构来解决各种语言问题。我的课堂项目:BertQA(github上99*颗星)- 荣获班级最佳项目奖CS231n - 用于视觉识别的卷积神经网络(Li教授和Justin Johnson)难度:4/5(中等)预期
Classifying physical activity from smartphone data
使用 Keras 训练卷积神经网络来对身体活动进行分类。该数据集是根据 30 名受试者在携带腰部安装的内置惯性传感器智能手机时进行基本活动和姿势转换的记录构建的。
Stop Sitting On All That Data & Do Something With It ⚙️
请将您的数据提供给机器。人工智能正在将数据需求提升到一个新的水平。📈假设您可以访问 5,000 张被正确诊断患有某种特定类型癌症(A 型)的患者的 X 射线图像。今天,使用这些数据来训练机器人在新患者中检测出这种癌症出奇地容易。要构建这个机器人,您需要构建一个由神经网络驱动的图像分类器,而 5,000 张 X 射线图像将是您的训练数据集。您将再添加 5,000 张没有癌症的患者的 X 射线,这样分类器就会同时拥有健康和受影响的 X 射线的示例。本质上,这个图像分类器机器人会使用图像梯度在像素级别寻找常见模式,并使用一种广泛使用的机器学习算法(称为反向传播)将该模式与 A 型癌症相关联。请注意,
Нейронная сеть DroNet учит БПЛА навигации в городе (+видео)
苏黎世联邦理工学院的科学家正在训练无人机识别汽车和自行车,使其能够在城市街道上行驶。使用的软件称为DroNet,它是一个卷积神经网络。科学家们将 GoPro 相机绑在汽车和自行车上,并在苏黎世周围行驶,从而编制了自己的数据库。这足以让无人机识别迎面而来的交通并避开障碍物。
Baidu’s Artificial-Intelligence Supercomputer (Minwa) Beats Google at Image Recognition
近来,图像分类中不断提升的判别能力的竞争愈演愈烈。2 天前,中国百度搜索公司宣布,他们打破了微软研究院在图像识别领域创下的记录,错误率仅降低了 0.36%。微软在近 3 个月前的 2015 年 2 月首次超越了人类的识别性能,而谷歌目前排名第二。所有这一切都是通过使用深度卷积网络和深度学习方案实现的,即构建神经形态识别方案,其中原始信息经过多个中间层,然后给出所需的类别识别输出。这是通过使用巨大的计算能力(超级计算机)来实现的,这种能力被用于对大量真实数据进行系统训练。这些新闻是对之前关于人类情感模拟和识别的文章的后续报道,科学家报告说,相应的系统可以达到并略微超过人类对情感的识别性能!对于那