Torch关键词检索结果

torch 时间序列,最后一集:注意力

torch time series, final episode: Attention

我们通过使用一种在自然语言处理中非常流行且受人类(和动物)认知启发的技术来增强上次的序列到序列架构,从而结束使用 torch 进行时间序列预测的迷你系列:注意力。

torch 时间序列,第三集:序列到序列预测

torch time series, take three: Sequence-to-sequence prediction

在我们对时间序列预测技术的概述中,我们转向序列到序列模型。该系列中的架构通常用于自然语言处理 (NLP) 任务,例如机器翻译。然而,对于 NLP,在进行模型定义和训练之前需要进行大量的预处理。在熟悉的数值序列中,我们可以完全专注于概念。

torch 时间序列继续:首次尝试多步预测

torch time series continued: A first go at multi-step prediction

我们继续探索使用 torch 进行时间序列预测,转向为多步预测设计的架构。在这里,我们通过多层感知器 (MLP) 增强了“主力 RNN”,以推断未来的多个时间步。

使用 torch 进行入门时间序列预测

Introductory time-series forecasting with torch

这篇文章介绍了使用 torch 进行时间序列预测。核心主题是数据输入和 RNN(GRU/LSTM)的实际使用。即将发布的文章将以此为基础,并介绍越来越复杂的架构。

位置嵌入如何在自注意力机制中工作(Pytorch 中的代码)

How Positional Embeddings work in Self-Attention (code in Pytorch)

了解位置嵌入是如何出现的,以及我们如何使用内部自注意力来对图像等高度结构化的数据进行建模

torch、tidymodels 和高能物理

torch, tidymodels, and high-energy physics

今天我们介绍 tabnet,这是“TabNet:专注可解释表格学习”的 torch 实现,与 tidymodels 框架完全集成。从本质上讲,tabnet 的设计只需要很少的数据预处理;多亏了 tidymodels,超参数调整(在深度学习中通常很麻烦)变得方便甚至有趣!

使用 torch 进行简单的音频分类

Simple audio classification with torch

本文将 Daniel Falbel 关于“简单音频分类”的文章从 TensorFlow/Keras 翻译成 torch/torchaudio。

用于空间预测的卷积 LSTM

Convolutional LSTM for spatial forecasting

在预测空间确定的现象(例如天气或电影中的下一帧)时,我们希望对时间演变进行建模,理想情况下使用递归关系。同时,我们希望有效地提取空间特征,这通常是使用卷积滤波器完成的。理想情况下,我们将拥有一个既是循环又是卷积的架构。在这篇文章中,我们使用 torch 构建了一个卷积 LSTM。

torch 0.2.0 - 初始 JIT 支持和许多错误修复

torch 0.2.0 - Initial JIT support and many bug fixes

torch 0.2.0 版本包含许多错误修复和一些不错的新功能,如初始 JIT 支持、多工作器数据加载器、新优化器和 nn_modules 的新打印方法。

使用 torch 进行脑图像分割

Brain image segmentation with torch

各种科学及其应用都需要对图像进行分割,其中许多对人类(和动物)生命至关重要。在这篇介绍性文章中,我们训练了一个 U-Net 来标记 MRI 脑部扫描中的病变区域。

用于表格数据的 torch

torch for tabular data

如何避免死于毒蘑菇。 另外:如何使用 torch 对表格数据进行深度学习,包括分类和数字特征的混合。

使用 torch 对图像进行分类

Classifying images with torch

我们了解迁移学习、输入管道和学习率调度程序,同时使用 torch 来区分美丽鸟类的种类。

torch 中的优化器

Optimizers in torch

今天,我们结束了关于 torch 基础知识的迷你系列,并为我们的工具集添加了两个抽象:损失函数和优化器。

使用 torch 模块

Using torch modules

在我们介绍 Torch 基础知识的迷你系列的第三部分中,我们用模块代替了手工编码的矩阵运算,大大简化了我们的玩具网络的代码。

介绍 torch autograd

Introducing torch autograd

使用 torch,几乎没有理由从头开始编写反向传播代码。它的自动微分功能称为 autograd,可跟踪需要计算梯度的操作以及如何计算它们。在这个由四部分组成的系列的第二篇文章中,我们更新了简单的手工编码网络以使用 autograd。

熟悉 torch 张量

Getting familiar with torch tensors

在这个由四部分组成的迷你系列的第一部分中,我们介绍了您想要了解的有关 torch 张量的主要内容。作为一个说明性示例,我们将从头开始编写一个简单的神经网络。

循环神经网络:在 Pytorch 中构建 GRU 单元 VS LSTM 单元

Recurrent Neural Networks: building GRU cells VS LSTM cells in Pytorch

RNN 相对于 transformer 有哪些优势?何时使用 GRU 而不是 LSTM?GRU 的方程式到底是什么意思?如何在 Pytorch 中构建 GRU 单元?

迈向隐私:使用 Syft 和 Keras 进行加密深度学习

Towards privacy: Encrypted deep learning with Syft and Keras

深度学习与隐私保护并非不可调和。联合学习支持设备上的分布式模型训练;加密使模型和梯度更新保持私密;差分隐私可防止训练数据泄露。如今,私密且安全的深度学习是一种新兴技术。在这篇文章中,我们介绍了 Syft,这是一个与 PyTorch 和 TensorFlow 集成的开源框架。在一个示例用例中,我们从 Keras 模型中获得私密预测。