IEEE Transactions on Neural Networks and Learning Systems, Volume 35, Number 9, September 2024
1) 特邀编辑:图学习专题作者:Feng Xia、Renaud Lambiotte、Neil Shah、Hanghang Tong、Irwin King页数:11630 - 116332) 用于异质图学习的置换等变图框架作者:Jianfei Li、Ruigang Zheng、Han Feng、Ming Li、Xiaosheng Zhuang页数:11634 - 116483) MARML:多层网络中基于主题感知的深度表示学习作者:Da Zhang、Mansur R. Kabuka页数:11649 - 116604) 面向极端数据稀缺的稳健图半监督学习作者:Kaize Ding、Elnaz No
How empirical is ’empirical’ macroeconomics?
来自 Lars Syll 乍一看,DSGE 模型似乎意味着完全无知,因为具有客观效用函数的代表性代理(或具有有限异质性的代理代表性群体)充斥着文献。然而,再看一眼,就会发现“方法论个人主义”占主导地位,甚至占据主导地位。要理解这种主导地位,只需 […]
Monopoly Capitalism Is Inefficient
标题的说法并不令人惊讶。但我发现,这是根据我如何建立生产价格模型得出的,前提是各行业之间的相对利润率是稳定的。我并不是这种建模的原创者。我的贡献是分析技术的选择,并探索这种分析如何随着相对加价的扰动而变化。在价格方程中,s1 r、s2 r、s3 r 等是各个行业的利润率。我称 r 为利润率的比例因子。给定技术和给定的工资(以给定的计量单位表示),可以找到价格和利润率的比例因子。比例因子是工资的递减函数。给定工资时的成本最小化技术是该工资外部边界工资曲线的技术。在转换点,不止一种技术可以实现成本最小化。在竞争市场的情况下,1 = s1 = s2 = s3 = ...对技术选择的分析简化为文献中的
Soft Computing, Volume 28, Issue 13-14, July 2024
1) 使用广义梯形模糊数的完整排序进行多准则决策:修改后的结果作者:Raina Ahuja、Amit Kumar、S. S. Appadoo页数:7589 - 76002) 分数不确定微分方程的参数估计作者:Cheng Luo、Guo–Cheng Wu、Ting Jin页数:7601 - 76163) CL 代数上的拓扑作者:H. Khajeh Nasir、M. Aaly Kologani、R. A. Borzooei页数:7617 - 76254) 基于 Siamese capsule gorilla soldiers network 的汽车评论多模态情绪分析作者:Sri Raman Kot
Comparing ANN and CNN on CIFAR-10: A Comprehensive Analysis
您是否好奇不同的神经网络如何相互叠加?在本博客中,我们将使用流行的 CIFAR-10 数据集深入研究人工神经网络 (ANN) 和卷积神经网络 (CNN) 之间的激动人心的比较。我们将分解 ANN 和 CNN 的关键概念、架构差异和实际应用。加入我们,揭秘哪种模型在图像分类任务中占据主导地位以及原因。让我们开始吧!数据集概述 CIFAR-10 数据集是机器学习和计算机视觉任务中广泛使用的数据集。它由 10 个不同类别的 60,000 张 32x32 彩色图像组成,其中有 50,000 张训练图像和 10,000 张测试图像。类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。本博客探讨了人
How to Succeed as a Machine Learning Engineer in the Industry
5 条帮助我在 BigTech 不断超越期望的提示您是否想过要成为一名成功的机器学习工程师需要什么?您是否很难确定自己在这个充满活力的领域中的角色?我也有过这样的经历!嗨!我是 Kartik Singhal,Meta 的高级机器学习工程师。凭借在该领域的六年经验,我仍然发现自己每天都在学习。今天,我将分享五条秘诀,这些秘诀帮助我在 BigTech 担任高级机器学习工程师期间获得了“超出预期”的评级。💻 构建基础图片作者,来自 ChatGPT 4o 您需要很好地理解机器学习基础知识,并意识到其在实际应用中的局限性。了解核心概念:掌握监督学习与无监督学习、分类与回归的基础知识,以及深度学习的基础知
Judge an LLM Judge: A Dual-Layer Evaluation Framework for Continuous Improvement of LLM Evaluation
“评判 LLM 评委”:用于持续改进 LLM 申请评估的双层评估框架“LLM 评委对 LLM 应用程序的评估”是否可以由另一位 LLM 评委审核,以持续改进评估过程?采用无参考方法的 LLM 应用程序评估持续改进框架 - 图片来自作者TLDR本文解释了雇用 LLM 评委评估另一位 LLM 评委的概念和低抽象实现。目的是改进 LLM 申请的评估流程,减少 LLM 评委未能做出公正评估的情况。目录介绍研究问题实验设计实施实验结果结论👉 简介❇️ 在构建 LLM 应用程序领域,如何确保一致且可靠的性能是讨论最多的主题之一。由于其不确定性,LLM 模型会在输出中产生很大的变化。因此,严格要求对 LLM
Improving GFlowNets for Text-to-Image Diffusion Alignment
这篇论文被 ICML 2024 的 Foundation Models in the Wild 研讨会接受。扩散模型已成为生成视觉数据的实际方法,这些模型经过训练以匹配训练数据集的分布。此外,我们还希望控制生成以满足所需的属性,例如与文本描述的对齐,这可以通过黑盒奖励函数来指定。先前的工作通过基于强化学习的算法对预训练的扩散模型进行了微调,以实现此目标。尽管如此,它们仍存在一些问题,包括信用分配缓慢……
On a Neural Implementation of Brenier's Polar Factorization
1991 年,Brenier 证明了一个定理,该定理将方阵的极分解(分解为 PSD ×\times× 单位矩阵)推广到任何矢量场 F:Rd→RdF:\mathbb{R}^d\rightarrow \mathbb{R}^dF:Rd→Rd。该定理称为极分解定理,指出任何场 FFF 都可以恢复为凸函数 uuu 的梯度与保测度映射 MMM 的组合,即 F=∇u∘MF=\nabla u \circ MF=∇u∘M。我们提出了这一影响深远的理论结果的实际实现,并探索了机器学习中的可能用途。该定理与… 密切相关
Reinforcement Learning, Part 5: Temporal-Difference Learning
智能协同动态规划和蒙特卡罗算法简介强化学习是机器学习的一个领域,它引入了代理在复杂环境中学习最佳策略的概念。代理根据环境状态从其行为中学习,从而获得奖励。强化学习是一个具有挑战性的话题,与机器学习的其他领域有很大不同。强化学习的非凡之处在于,可以使用相同的算法使代理适应完全不同、未知和复杂的条件。注意。为了充分理解本文中的概念,强烈建议您熟悉之前文章中讨论的动态规划和蒙特卡罗方法。强化学习,第 2 部分:策略评估和改进强化学习,第 3 部分:蒙特卡罗方法关于本文在第 2 部分中,我们探索了动态规划 (DP) 方法,其中代理根据先前的计算迭代更新 V-/Q 函数及其策略,并用新的估计值替换它们。
如何清理巴西任何 Shapefile 的 MapBiomas LULC 栅格图 1:AC 波尔图阿克里的土地利用和土地覆盖(1985-2022 年)。自制,使用 MapBiomas LULC Collection 8。如果您曾经处理过巴西的土地使用数据,那么您肯定遇到过 MapBiomas²。他们的遥感团队开发了一种算法,用于对巴西(现在包括南美洲和印度尼西亚大部分地区)每块 30m x 30m 领土的土地使用进行分类。九年后,他们提供了各种产品,包括 MapBiomas LCLU(我们将在这里探索)、MapBiomas Fire、MapBiomas Water、MapBiomas Irrig
Rainbow: The Colorful Evolution of Deep Q-Networks
在 JAX 中组装 DQN Megazord 所需的一切。“彩虹 Megazord”,Dall-E 32013 年,Mnih 等人引入了深度 Q 网络 (DQN)。[1] 标志着深度强化学习的首次突破,在三款 Atari 游戏中超越了人类专家玩家。多年来,DQN 的几种变体相继发布,每种变体都针对原始算法的特定弱点进行了改进。2017 年,Hessel 等人。[2]通过结合 6 种强大的变体,充分利用了 DQN 调色板,打造出所谓的 DQN Megazord:Rainbow。在本文中,我们将分解组成 Rainbow 的各个组件,同时回顾它们在 Stoix 库中的 JAX 实现。DQNRainb
Step-by-Step Guide to Creating Simulated Data in Python
一个适合初学者的教程,教你如何生成自己的数据进行分析和测试照片由 Alexandru-Bogdan Ghita 在 Unsplash 上拍摄想象一下,你刚刚编写了一个机器学习模型,需要在特定场景中对其进行测试,或者你正在发布一篇关于自定义数据科学解决方案的学术论文,但可用的数据集有版权限制。另一方面,你可能正处于机器学习项目的调试和故障排除阶段,需要数据来识别和解决问题。所有这些情况,以及更多情况,都可以从使用模拟数据中受益。通常,现实世界的数据并不容易获得、昂贵或私密。因此,创建合成数据对数据科学从业者和专业人士来说是一项有用的技能。在本文中,我介绍了一些使用 Python 从头开始创建
Accurate Knowledge Distillation via N-best Reranking
我们建议利用 n-best 重新排序来增强序列级知识蒸馏 (Kim and Rush, 2016),其中我们从前 n 个最佳假设中提取学生模型训练数据的伪标签,并利用具有不同归纳偏差、目标函数或架构的多样化模型集(包括一些公开可用的大型语言模型)来挑选最高质量的假设作为标签。通过在 WMT’21 德语 ↔ 英语和中文 ↔ 英语翻译任务上的实验验证了我们提案的有效性。我们的结果表明,利用……
Salesforce challenges trends in AI with the tiny yet mighty xLAM-1B and 7B models
企业软件公司 Salesforce 推出了两个紧凑型 AI 模型,挑战了 AI 中的“越大越好”范式。尽管体积小巧,但 10 亿和 70 亿参数的 xLAM 模型在函数调用任务中的表现优于许多更大的模型。这些任务涉及 AI 系统将自然语言请求解释和翻译成特定的函数调用或 API 请求。例如,如果您要求 AI 系统“查找下周末飞往纽约的 500 美元以下航班”,则模型需要理解此请求,识别相关函数(例如 search_flights、filter_by_price),并使用正确的参数执行它们。“我们展示了 Salesforce 用小巧但强大的 xLAM-1B 和 7B 模型挑战 AI 趋势的帖子首
LLM Alignment: Reward-Based vs Reward-Free Methods
LLM 对齐的优化方法上下文语言模型已经展示了根据用户提供的提示生成各种引人注目的文本的非凡能力。然而,定义什么是“好”文本具有挑战性,因为它通常取决于个人偏好和具体背景。例如,在讲故事时,创造力是关键;在制作信息内容时,准确性和可靠性至关重要;而在生成代码时,确保它正确运行至关重要。因此出现了“LLM 对齐问题”,它指的是确保大型语言模型 (LLM) 的行为方式符合人类价值观、意图和偏好的挑战。设计一个损失函数来捕捉我们在文本中重视的各种品质——比如创造力、准确性或可执行性——是非常复杂且通常不切实际的。像这样的概念是不可区分的,因此不能反向传播,也不能用简单的下一个标记生成来训练。想象一下
Caprimulgus ritaeKing, Sangster, Trainor, Irestedt, Prawiradilaga & Ericson, 2024 帝汶夜鹰 | Cabak Timor || DOI: 10.1111/ibi.13340 Researchgate.net/publication/381669747photo by James Eaton摘要Caprimulgus macrurus 复合群的夜鹰分布于巴基斯坦至澳大利亚,包含六种形态相似但声音不同的物种。在小巽他群岛的帝汶和韦塔尔进行的实地考察发现了该复合群中的第七种物种,我们将其描述为新物种。该物种之前曾与 Ca
How To Speed Up Python Code with Caching
了解如何通过使用内置 functools 模块中的缓存装饰器缓存昂贵的函数调用来加速 Python 代码。