函数调用关键词检索结果

函数调用:在 xLAM 上微调 Llama 3

Function Calling: Fine-Tuning Llama 3 on xLAM

得益于 QLoRA,速度快且内存效率高继续阅读 Towards Data Science »

TinyAgent:边缘函数调用

TinyAgent: Function Calling at the Edge

LLM 能够通过普通语言(例如英语)执行命令,这使得代理系统能够通过协调正确的工具集(例如 ToolFormer、Gorilla)来完成用户查询。这与最近的多模式努力(例如 GPT-4o 或 Gemini-1.5 模型)一起扩大了 AI 代理的可能性范围。虽然这非常令人兴奋,但这些模型的模型大小和计算要求通常要求在云端进行推理。这可能会给它们的广泛采用带来一些挑战。首先,将视频、音频或文本文档等数据上传到云端的第三方供应商可能会导致隐私问题。其次,这需要云/Wi-Fi 连接,而这并不总是可行的。例如,部署在现实世界中的机器人可能并不总是有稳定的连接。除此之外,延迟也可能是一个问题,因为将大量数

OpenAI 推出新的 o3-mini 共振模型以及免费版 ChatGPT

OpenAI lanserar en ny o3-mini resonansmodell med en gratis version av ChatGPT

OpenAI 推出了 o3-mini,这是一种新的经济高效的 AI 模型,可在科学、数学和编码方面提供卓越的 STEM 功能。该模型比其前代产品具有更快的响应时间,同时保持了较低的成本。它引入了新的开发人员功能,例如函数调用、结构化输出和开发人员通知,并提供了三个不同的推理级别以优化特定需求的使用。新模型代表了 […]OpenAI 推出了一种新的 o3-mini 共振模型,其中包含 ChatGPT 的免费版本,该文章首次出现在 AI 新闻中。

使用 Amazon Bedrock 通过智能元数据过滤简化 RAG 应用程序

Streamline RAG applications with intelligent metadata filtering using Amazon Bedrock

在本文中,我们探索了一种创新方法,该方法使用 Amazon Bedrock 上的 LLM 智能地从自然语言查询中提取元数据过滤器。通过结合 LLM 函数调用和 Pydantic 数据模型的功能,您可以动态地从用户查询中提取元数据。这种方法还可以提高检索到的信息和 RAG 应用程序生成的响应的质量。

在 LLM 代理框架之间进行选择

Choosing Between LLM Agent Frameworks

构建定制的基于代码的代理和主要代理框架之间的权衡。作者提供的图片感谢 John Gilhuly 对本文的贡献。代理正处于发展阶段。随着多个新框架和该领域的新投资,现代 AI 代理正在克服不稳定的起源,迅速取代 RAG 成为实施优先事项。那么 2024 年最终会成为自主 AI 系统接管编写电子邮件、预订航班、与我们的数据对话或任何其他任务的一年吗?也许,但要达到这一点还有很多工作要做。任何构建代理的开发人员不仅必须选择基础——使用哪种模型、用例和架构——还必须选择要利用哪个框架。您会选择长期存在的 LangGraph 还是新进入的 LlamaIndex Workflows?或者你走传统路线,自己

Salesforce 凭借小巧但强大的 xLAM-1B 和 7B 模型挑战 AI 趋势

Salesforce challenges trends in AI with the tiny yet mighty xLAM-1B and 7B models

企业软件公司 Salesforce 推出了两个紧凑型 AI 模型,挑战了 AI 中的“越大越好”范式。尽管体积小巧,但 10 亿和 70 亿参数的 xLAM 模型在函数调用任务中的表现优于许多更大的模型。这些任务涉及 AI 系统将自然语言请求解释和翻译成特定的函数调用或 API 请求。例如,如果您要求 AI 系统“查找下周末飞往纽约的 500 美元以下航班”,则模型需要理解此请求,识别相关函数(例如 search_flights、filter_by_price),并使用正确的参数执行它们。“我们展示了 Salesforce 用小巧但强大的 xLAM-1B 和 7B 模型挑战 AI 趋势的帖子首

如何使用缓存加速 Python 代码

How To Speed Up Python Code with Caching

了解如何通过使用内置 functools 模块中的缓存装饰器缓存昂贵的函数调用来加速 Python 代码。