原始模型关键词检索结果

uicoder:通过自动反馈生成用户界面代码的大型语言模型

UICoder: Finetuning Large Language Models to Generate User Interface Code through Automated Feedback

大型语言模型(LLMS)难以始终生成编译并产生视觉相关设计的UI代码。现有的改善发电的方法取决于昂贵的人类反馈或提炼专有模型。在本文中,我们探讨了自动反馈(编译器和多模式模型)的使用来指导LLMS生成高质量的UI代码。我们的方法从现有的LLM开始,并通过使用原始模型自我生成大型合成数据集来迭代地产生改进的模型,并应用自动化工具来积极过滤,得分和删除…

dicehubert:用自我监督的学习目标蒸馏出休伯特

DiceHuBERT: Distilling HuBERT with a Self-Supervised Learning Objective

我们介绍了Dicehubert,这是一种用于压缩Hubert的知识蒸馏框架,Hubert是一种广泛使用的自我监督学习(SSL)的语音基础模型。与依赖于层次和学生模型之间的特征映射的现有蒸馏方法不同,Dicehubert通过直接用学生模型直接替换原始模型来利用Hubert的迭代自我鉴定机制。这种替代品允许使用与培训前使用相同的SSL目标对学生进行培训,从而消除了对其他模块或建筑约束的需求……

使用 Sentinel-2 影像和辅助地理空间数据自动绘制国际异质景观中的土地覆盖类型

Automated Mapping of Land Cover Type within International Heterogenous Landscapes Using Sentinel-2 Imagery with Ancillary Geospatial Data

摘要:目前尚不存在使用浅层机器学习和低密度时间序列图像进行自动训练数据生成和土地覆盖分类的近全球框架。本研究提出了一种使用 Sentinel-2 颗粒的两个日期在七个国际站点绘制九类、六类和五类土地覆盖的方法。该方法使用一系列光谱、纹理和距离决策函数与修改后的辅助层相结合来创建二进制掩码,从中生成一组平衡的训练数据应用于随机森林分类器。对于土地覆盖掩码,对反射率、光谱指数值和欧几里得距离层应用了逐步阈值调整,评估了 62 种组合。计算了全球和区域自适应阈值。使用年度 95 和 5 百分位 NDVI 合成为决策函数提供时间校正,并将这些校正与原始模型进行比较。精度评估发现,两日期土地覆盖和时间校

等权重 HAR 组合

Equal-weight HAR combination

这真是让我震惊。真是太有见地了。在另一个背景下,等权重组合规则!另请参阅我与 Minchul Shin 合作的论文,这些论文分别明确指出了点预测和密度预测的权重相等:Diebold, F.X. 和 Shin, M. (2019),“机器学习用于正则化调查预测组合:部分平等的套索及其衍生物”,《国际预测杂志》,35,1679-1691。Diebold, F.X.、Shin, M. 和 Zhang, B. (2022),“关于概率评估的聚合:欧元区通胀和实际利率的正则化预测密度混合”,《计量经济学杂志》,即将出版。工作论文,arXiv:2012.11649。HAR 模型中的预测组合难题作者:Cle