成本函数关键词检索结果

胜者为王:了解激活和成本函数

Winner takes all: A look at activations and cost functions

我们为什么要使用我们使用的激活,它们与它们往往同时出现的成本函数有何关系?在这篇文章中,我们提供了一个概念介绍。

学习弹性成本以塑造 Monge 位移

Learning Elastic Costs to Shape Monge Displacements

给定一个由 Rd\mathbb{R}^dRd 支持的源和目标概率测量,Monge 问题旨在以最有效的方式将一个分布映射到另一个分布。这种效率通过定义源数据和目标数据之间的成本函数来量化。在机器学习文献中,这种成本通常默认设置为平方欧几里得距离,ℓ22(x,y)=12∥x−y∥22\ell^2_2(x,y)=\tfrac12\|x-y\|_2^2ℓ22​(x,y)=21​∥x−y∥22​。使用弹性成本的好处,通过正则化器 τ\tauτ 定义为 c(x,y)=ℓ22(x,y)+τ(x−y)c(x, y)=\ell^2_2(x,y)+\tau(x-y)c(x,y)=ℓ22​(x,y)+τ(x−y),

#94 – Ilya Sutskever:深度学习

#94 – Ilya Sutskever: Deep Learning

Ilya Sutskever 是 OpenAI 的联合创始人,是历史上被引用次数最多的计算机科学家之一,引用次数超过 165,000 次,对我来说,他是深度学习领域有史以来最聪明、最有洞察力的人之一。在这个世界上,很少有人比 Ilya 更愿意与我谈论深度学习、智能和生活,无论是在话筒上还是话筒下。通过注册以下赞助商来支持此播客:– Cash App – 使用代码“LexPodcast”并下载:– Cash App(App Store):https://apple.co/2sPrUHe– Cash App(Google Play):https://bit.ly/2MlvP5w 剧集链接:Ilya