数据格式关键词检索结果

构建一个域名数据预处理管道:一种多代理协作方法

Build a domain‐aware data preprocessing pipeline: A multi‐agent collaboration approach

在这篇文章中,我们介绍了使用亚马逊基德岩处理非结构化保险数据的多代理协作管道,其中包含用于分类,转换和元数据提取的专业代理。我们演示了这种域感知方法如何将索赔文档,视频和音频文件(例如元数据的输出)等多样化的数据格式转换为实现欺诈检测,客户360度视图和高级分析的输出。

自定义Amazon Nova模型以改善工具使用

Customize Amazon Nova models to improve tool usage

在这篇文章中,我们演示了与Amazon Nova一起使用的模型自定义(微调)。我们首先引入工具用例用例,并提供有关数据集的详细信息。我们介绍了亚马逊NOVA特定数据格式的详细信息,并展示了如何通过Converse进行工具并在Amazon Bedrock中调用API。在获得亚马逊NOVA模型的基线结果后,我们详细解释了微调过程,托管带有配置吞吐量的微型模型,并使用微调的Amazon Nova模型进行推理。

文档管理和数据标准化中的AI:转换业务工作流

AI in Document Management and Data Standardization: Transforming Business Workflows

在一个企业不知所措的时代,人工智能(AI)已成为文档管理和数据标准化方面的游戏规则改变者。传统的文档处理通常充满效率低下 - 基于纸的过程,非结构化数据格式和手动输入错误。 AI通过自动化,结构和优化文档工作流程来彻底改变这一空间,使公司能够简化[…]

从 RAG 到结构:在 GenAIIC 构建真实 RAG 的经验教训 - 第 2 部分

From RAG to fabric: Lessons learned from building real-world RAGs at GenAIIC – Part 2

本博文重点介绍如何在异构数据格式上执行 RAG。我们首先介绍路由器,以及它们如何帮助管理不同的数据源。然后,我们给出如何处理表格数据的提示,最后介绍多模式 RAG,特别关注处理文本和图像数据的解决方案。

了解 K-Fold 目标编码以处理高基数

Understanding K-Fold Target Encoding to Handle High Cardinality

平衡复杂性和性能:深入了解 K 折目标编码照片由 Mika Baumeister 在 Unsplash 上拍摄简介数据科学从业者在处理不同项目中的不同数据类型时会遇到许多挑战,每个项目都需要独特的处理方法。一个常见的障碍是使用传统机器学习模型难以有效处理的数据格式,导致模型性能不佳。由于大多数机器学习算法都针对数值数据进行了优化,因此将分类数据转换为数值形式至关重要。然而,这通常会过度简化复杂的分类关系,尤其是当特征具有高基数(即大量唯一值)时,这会使处理复杂化并妨碍模型准确性。高基数是指特征中唯一元素的数量,具体解决机器学习环境中分类标签的不同计数。当一个特征有许多唯一的分类标签时,它具有高

在单一界面中使用不同的 LLM 构建对话聊天机器人 - 第 1 部分

Build a conversational chatbot using different LLMs within single interface – Part 1

随着生成人工智能 (AI) 的出现,基础模型 (FM) 可以生成内容,例如回答问题、总结文本和提供源文档中的亮点。但是,对于模型选择,有多种模型提供商可供选择,例如 Amazon、Anthropic、AI21 Labs、Cohere 和 Meta,再加上 PDF 中的离散真实世界数据格式,[…]

SafeDocs:安全文档

SafeDocs: Safe Documents

项目负责人:Sergey Bratus 博士 赞助组织:DARPA网站:https://www.darpa.mil/program/safe-documents项目概要:SafeDocs 将开发新颖的经过验证的编程方法,用于构建现有电子数据格式的高可信度解析器,以及用于理解的新颖方法,