Are We Ready for Multi-Image Reasoning? Launching VHs: The Visual Haystacks Benchmark!
人类擅长处理大量视觉信息,这是实现通用人工智能 (AGI) 的关键技能。几十年来,人工智能研究人员开发了视觉问答 (VQA) 系统来解释单个图像中的场景并回答相关问题。虽然基础模型的最新进展大大缩小了人类和机器视觉处理之间的差距,但传统的 VQA 仅限于一次推理单个图像,而不是整个视觉数据集合。这种限制在更复杂的场景中带来了挑战。例如,辨别医学图像集合中的模式、通过卫星图像监测森林砍伐、使用自动导航数据绘制城市变化、分析大型艺术收藏中的主题元素或从零售监控录像中了解消费者行为等挑战。这些场景中的每一个不仅需要对数百或数千张图像进行视觉处理,还需要对这些发现进行跨图像处理。为了弥补这一差距,本项