最优值关键词检索结果

强化学习,第 8 部分:特征状态构建

Reinforcement Learning, Part 8: Feature State Construction

通过将状态特征巧妙地纳入学习目标来增强线性方法强化学习是机器学习的一个领域,它引入了代理在复杂环境中学习最佳策略的概念。代理根据环境状态从其行为中学习,从而获得奖励。强化学习是一个具有挑战性的话题,与机器学习的其他领域有很大不同。强化学习的显著之处在于,可以使用相同的算法使代理适应完全不同、未知和复杂的条件。关于本文在第 7 部分中,我们介绍了可扩展标准表格方法的值函数近似算法。除此之外,我们特别关注了一个非常重要的情况,即近似值函数是线性的。我们发现,线性保证了收敛到全局最优值或 TD 不动点(在半梯度方法中)。问题是,有时我们可能希望使用更复杂的近似值函数,而不仅仅是简单的标量积,而不离开