Model-assisted labelling - For better or for worse?
毫无疑问,对于许多 AI 项目来说,收集数据是项目最昂贵的部分。标记图像和文本片段等数据是一项艰巨而繁琐的工作,而且没有太大的扩展可能性。如果 AI 项目需要不断更新或获取新数据,那么这可能是一项高昂的成本,可能会对一个原本很棒的项目的整个商业案例构成挑战。不过,有一些策略可以降低标记数据的成本。我之前写过关于主动学习的文章;这是一种数据收集策略,侧重于在模型置信度最低的情况下优先标记最重要的数据。这是一个很好的策略,但在大多数情况下,您仍然需要标记大量数据。为了加快标记过程,出现了模型辅助标记策略。这个想法很简单,就是在标记的同时训练 AI,当 AI 开始在数据中看到某种模式时,AI 会向标