标记器关键词检索结果

NVIDIA Cosmos 是一个经过 2000 万小时视频训练的大型开源视频世界模型

NVIDIA Cosmos en massiv öppen källkod video världsmodell tränad på 20 MILJONER timmar video

NVIDIA 推出了新平台 Cosmos,旨在加速自动驾驶汽车和机器人等物理 AI 系统的开发。 Cosmos 包括生成世界模型、高级标记器和针对 NVIDIA 云 GPU 优化的加速视频处理管道。该平台基于数百万小时的驾驶和机器人视频数据进行训练,并根据开放许可提供,以实现 […] NVIDIA Cosmos 的开发民主化,这是一个基于 2000 万小时视频进行训练的大型开源视频世界模型,首次出现在 AI消息。

如何使用 BART 模型和 Hugging Face Transformers 总结文本

How to Summarize Texts Using the BART Model with Hugging Face Transformers

要使用 Hugging Face 的 BART 模型总结文本,请加载模型和标记器,输入文本,然后模型会生成简明的摘要。

了解利用未标记数据的深度学习算法,第 1 部分:自我训练

Understanding Deep Learning Algorithms that Leverage Unlabeled Data, Part 1: Self-training

深度模型需要大量的训练样本,但标记数据很难获得。这激发了利用未标记数据的重要研究方向,而未标记数据通常更容易获得。例如,可以通过爬取网络获取大量未标记的图像数据,而 ImageNet 等标记数据集则需要昂贵的标记程序。在最近的实证发展中,使用未标记数据训练的模型已开始接近全监督性能(例如 Chen 等人,2020 年,Sohn 等人,2020 年)。本系列博客文章将讨论我们的理论工作,该工作旨在分析使用未标记数据的最新实证方法。在第一篇文章中,我们将分析自我训练,这是一种非常有影响力的半监督学习和领域自适应算法范式。在第 2 部分中,我们将使用相关理论思想来分析自监督对比学习算法,这种算法对于

了解利用未标记数据的深度学习算法,第 1 部分:自我训练

Understanding Deep Learning Algorithms that Leverage Unlabeled Data, Part 1: Self-training

深度模型需要大量的训练样本,但标记数据很难获得。这激发了利用未标记数据的重要研究方向,而未标记数据通常更容易获得。例如,可以通过爬取网络获取大量未标记的图像数据,而 ImageNet 等标记数据集则需要昂贵的标记程序。在最近的实证发展中,使用未标记数据训练的模型已开始接近全监督性能(例如 Chen 等人,2020 年,Sohn 等人,2020 年)。本系列博客文章将讨论我们的理论工作,该工作旨在分析使用未标记数据的最新实证方法。在第一篇文章中,我们将分析自我训练,这是一种非常有影响力的半监督学习和领域自适应算法范式。在第 2 部分中,我们将使用相关理论思想来分析自监督对比学习算法,这种算法对于