How to Label Images Properly for AI: Top 5 Challenges & Best Practices
为什么重要:作为一个激进的转换器,图像标记可以调节 AI 模型的精度,因此是计算机视觉模型的成功杠杆。它发挥着核心作用,是 AI 实施成功的首要程序。
Image Annotation Techniques for Computer Vision Projects
https://www.youtube.com/watch?v=YbKW1qEuxEQ 了解标记图像的不同方式,以帮助 AI 学习“看”和理解周围的世界。从在物体周围画框到为图像的不同部分着色,这段视频展示了这些技术如何帮助训练 AI 识别和解释视觉效果。
Image classification in machine learning: A full guide (2024) | Viam
了解机器学习(包括深度学习方法)中的图像分类的工作原理。了解与物体检测的区别、如何标记图像以及如何将模型部署到您的机器上。
Model-assisted labelling - For better or for worse?
毫无疑问,对于许多 AI 项目来说,收集数据是项目最昂贵的部分。标记图像和文本片段等数据是一项艰巨而繁琐的工作,而且没有太大的扩展可能性。如果 AI 项目需要不断更新或获取新数据,那么这可能是一项高昂的成本,可能会对一个原本很棒的项目的整个商业案例构成挑战。不过,有一些策略可以降低标记数据的成本。我之前写过关于主动学习的文章;这是一种数据收集策略,侧重于在模型置信度最低的情况下优先标记最重要的数据。这是一个很好的策略,但在大多数情况下,您仍然需要标记大量数据。为了加快标记过程,出现了模型辅助标记策略。这个想法很简单,就是在标记的同时训练 AI,当 AI 开始在数据中看到某种模式时,AI 会向标