特征提取关键词检索结果

从模糊到精确:形态特征提取器如何增强AI的识别能力

From Fuzzy to Precise: How a Morphological Feature Extractor Enhances AI’s Recognition Capabilities

模仿人类的视觉感知,真正理解对象从模糊到确切的帖子:形态特征提取器如何增强AI的识别能力首先出现在数据科学上。

从模糊到精确:形态特征提取器如何增强AI的识别能力

From Fuzzy to Precise: How a Morphological Feature Extractor Enhances AI’s Recognition Capabilities

模仿人类的视觉感知,真正理解对象从模糊到确切的帖子:形态特征提取器如何增强AI的识别能力首先出现在数据科学上。

通过图神经网络进行恶意软件家族分析的序列特征提取

Sequence Feature Extraction for Malware Family Analysis via Graph Neural Network

恶意软件对我们的设备和生活造成了很大的危害。我们迫切希望了解恶意软件的行为及其造成的威胁。恶意软件的大多数记录文件都是可变长度的、带有时间戳的基于文本的文件,例如事件日志数据和动态分析配置文件。利用时间戳,我们可以将这些数据分类为基于序列的数据,以便进行后续分析。然而,处理可变长度的基于文本的序列很困难。此外,与自然语言文本数据不同,信息安全中的大多数序列数据都具有特定的属性和结构,例如循环、重复调用、噪声等。为了深入分析 API 调用序列及其结构,我们使用图来表示序列,这可以进一步研究信息和结构,例如马尔可夫模型。因此,我们设计并实现了一个注意力感知图神经网络 (AWGCN) 来分析 API

掌握3D重建过程:逐步指南

Master the 3D Reconstruction Process: A Step-by-Step Guide

从特征提取到密集匹配的完整3D重建管道。带有Python代码示例和开源工具的主摄影测量。

《IEEE 认知和发展系统学报》,第 16 卷,第 6 期,2024 年 11 月

IEEE Transactions on Cognitive and Developmental Systems, Volume 16, Issue 6, November 2024

1) LITE-SNN:利用固有动态训练节能脉冲神经网络进行顺序学习作者:Nitin Rathi、Kaushik Roy页数:1905 - 19142) 最小化 EEG 人为干扰:使用深度卷积神经网络进行自适应 EEG 空间特征提取的研究作者:Haojin Deng、Shiqi Wang、Yimin Yang、W. G. Will Zhao、Hui Zhang、Ruizhong Wei、Q. M. Jonathan Wu、Bao-Liang Lu页数:1915 - 19283) 长期感官家庭训练的自适应框架:可行性研究作者:Stefano Silvoni、Simon Desch、Florian

IEEE 进化计算学报,第 28 卷,第 6 期

IEEE Transactions on Evolutionary Computation, Volume 28, Issue 6

1) 具有共享个体的多任务线性遗传规划及其在动态作业车间调度中的应用作者:Zhixing Huang, Yi Mei, Fangfang Zhang, Mengjie Zhang页数:1546 - 15602) 评估将进化与学习相结合以在复杂形态空间中设计机器人的框架作者:Wei Li, Edgar Buchanan, Léni K. Le Goff, Emma Hart, Matthew F. Hale, Bingsheng Wei, Matteo De Carlo, Mike Angus, Robert Woolley, Zhongxue Gan, Alan F. Winfield, Jo

Scikit-fingerprints:用于高效分子指纹计算和与机器学习管道集成的高级 Python 库

Scikit-fingerprints: An Advanced Python Library for Efficient Molecular Fingerprint Computation and Integration with Machine Learning Pipelines

在计算化学中,分子通常表示为分子图,必须将其转换为多维向量才能进行处理,特别是在机器学习应用中。这是使用将分子结构编码为向量的分子指纹特征提取算法实现的。这些指纹对于化学信息学中的任务至关重要,例如化学空间多样性、聚类、虚拟筛选、Scikit-fingerprints:用于高效分子指纹计算和与机器学习管道集成的高级 Python 库首先出现在 AI Quantum Intelligence 上。

通过潜在变量镜头进行主成分分析 (PCA)

Principal Components Analysis (PCA) Through a Latent Variable Lens

概述 PPCA(经典 PCA 的扩展)及其通过 EM 算法应用于不完整数据照片由 Dhruv Weaver 在 Unsplash 上拍摄。随着 EM 算法的 E 和 M 步骤重复,该算法收敛到局部最大似然估计量。概率主成分分析 (PPCA) 是一种降维技术,利用潜在变量框架恢复数据中最大方差的方向。当噪声遵循各向同性高斯分布时,概率主成分将与经典主成分紧密相关,在缩放因子和正交旋转方面相同。因此,PPCA 可用于许多与经典 PCA 相同的应用,例如数据可视化和特征提取。PPCA 背后的潜在变量框架还提供了经典 PCA 所不具备的功能。例如,PPCA 可以轻松扩展以适应具有缺失值的数据,而经典

YOLOP:只需看一次即可获得全景驾驶感知

YOLOP: You Only Look Once for Panoptic Driving Perception

全景驾驶感知系统是自动驾驶的重要组成部分。高精度、实时的感知系统可以帮助车辆在驾驶时做出合理的决策。我们提出了一个全景驾驶感知网络(YOLOP),用于同时执行交通物体检测、可驾驶区域分割和车道检测。它由一个用于特征提取的编码器和三个用于处理特定任务的解码器组成。我们的模型在具有挑战性的 BDD100K 数据集上表现非常出色,在准确性和速度方面在所有三个任务上都达到了最先进的水平。此外,我们通过烧蚀研究验证了我们的多任务学习模型用于联合训练的有效性。

具有长期短期记忆的深度循环神经网络

Deep Recurrent Neural Nets with Long Short Term Memory

再次。LTSM 可能正在成为循环 NN 建模中的大问题。我之前写过博客(例如这里),但我仍然不太了解它。有人了解吗?也许它只是一种避免消失梯度问题的手段(并不是说这并不重要);也许它更重要。这篇新论文写得很好,突出介绍了 LSTM。DONUT 集成组合预测方法作者:Lars Lien Ankile;Kjartan Krange摘要:本文提出了一种集成预测方法,通过减少特征和模型选择假设,在 M4Competition 数据集上显示出强劲的结果,称为 DONUT(不使用人类假设)。我们的假设减少主要由自动生成的特征和更多样化的集成模型池组成,其表现明显优于 Montero-Manso 等人(20