World Record Broken: New Material Revolutionizes Ion Conductivity
TUM的研究人员开发了一种用于固态电池的新材料。固态电池被视为改变储能未来的游戏规则。他们可以持有更多的功率,并且更安全,因为它们不依赖于当今的锂离子电池等易燃材料。现在,慕尼黑技术大学(TUM)和Tumint.Energy Research [...]
由中国科学院赫费伊物理科学学院的王桥教授和王·佩(Wang Pei)博士领导的研究团队发现,PBSE0.5TE0.5在PBSE0.5TE0.5中发现了同时发生的负面照相(NPC)和超导性。诱导的结构过渡。该研究已发表在高级材料中。
摘要:新研制的钝感高爆化合物3-硝基-1,2,4-三唑-5-酮(NTO)由于其高水溶性和低土壤亲和性,在环境中具有移动性。 NTO 的弱酸性 (pKa 3.67) 对高效液相色谱法的环境分析提出了挑战,但可以通过离子色谱法 (IC) 直接分离。我们开发了一种在天然水、土壤和爆炸后残留物中检测 NTO 的 IC 方法。氢氧化钾梯度分离可在 18 分钟内有效分离无机阴离子(F−、Cl−、NO2−、Br−、SO42−、NO3− 和 PO43−)和 NTO。水性 NTO 的抑制电导率在 10 µg/L 至 10 mg/L 范围内呈线性,检测限为 3 µg/L,定量限为 9 µg/L。添加 NTO 的天
Glaphene: 2D hybrid material integrates graphene and silica glass for next-generation electronics
未来技术的一些最有希望的材料只有一个厚的原子,例如石墨烯,一片碳原子在六角形晶格中排列的碳原子,以其出色的强度和电导率而备受赞誉。尽管存在数百种此类材料,但将它们真正合并为新事物仍然是一个挑战。大多数努力都像一张纸牌一样堆叠这些原子薄片,但是这些层通常缺乏它们之间的显着相互作用。
Plastic Supercapacitors Could Help Solve the Energy Crisis
一种新方法可产生PEDOT纳米纤维,具有增强的电导率和增加的表面积,以改善电荷存储。加州大学洛杉矶分校化学家开发了一种新的纹理,类似毛皮的PEDOT,这是一种常用的导电塑料,该导电塑料通常用于保护电子设备免受静态和诸如太阳能电池和电染色体显示器之类的设备。这种创新形式大大增加了材料的[...]
The Art and Science of Copper Plating: Trends, Costs, and the Future with Aerospace Metals
铜板是一个吸引了几个世纪的过程,以其出色的电导率,耐腐蚀性和美学吸引力而闻名。随着从电气组件到装饰元素的各种应用越来越多地转向铜,铜制造的动态正在发展。在此博客中,我们将深入研究铜板,铜制造的当前趋势,[…]
BYD Unveils Five-Minute Charger As China Leads Solid State EV Battery Revolution
Byd揭开了五分钟的充电器,因为中国领导固态电动汽车电池革命电池和车辆制造商正在小规模测试固态电池,以推动增长,尽管在大规模采用之前仍然存在技术挑战。无论如何,EV电池未来的道路似乎很清楚。使用固体电解质的电池可以通过改善能量密度,安全性,安全性,寿命,范围和充电时间来彻底改变电动汽车,从而缓解驾驶员的“范围焦虑”。在2月24日,梅赛德斯 - 梅赛德斯 - 梅塞德斯 - 奔驰(Mercedes-Benz)开始对美国的固体固体电池进行道路测试,从美国索赔1 000%的KM索赔,并索取了A 25%的股票范围。但是,验证合适的材料仍然是一个挑战,基于硫化物的电解质偏爱电导率,但产生昂贵。其他选项包括
Conductors, Insulators, Semiconductors
导体:导体是施加电压后容易让电流流动的材料,例如铜。电导率是衡量电流流过该材料的难易程度的标准,用符号 σ (sigma) 表示。其单位是西门子/米 (S/m),但通常使用毫西门子/米。它是 […]
摘要:黑色素是存在于生活各个领域的色素生物大分子。在黑色素的许多独特特性中,它们的可塑性导电特性和螯合能力可以使它们成为生物电子材料。研究表明,黑色素片或颗粒的导电能力较低;然而,细胞内黑色素的电导率尚未得到彻底研究。此外,考虑到黑色素的螯合特性,引入传统导电金属离子可能会提高电导率。因此,本研究研究了黑化细胞的导电特性以及金属离子如何改变这些特性。我们测量了添加或不添加铜离子的粉碎的新月弯孢菌(一种黑化丝状真菌)的电导率。然后,我们将真菌的电导率测量值与化学合成的、商业购买的黑色素进行了比较。我们的数据表明,当在铜存在下生长时,黑化真菌生物质的电导率要高出一个数量级。然而,它比合成黑色素低两
Air Force scientists discover unique stretchable conductor
导电材料在拉紧或拉伸时会改变其属性。通常,随着拉伸,电导率会降低,电阻会增加。
Air Force scientists discover unique stretchable conductor
导电材料在受到拉力或拉伸时会改变其特性。通常,随着拉伸,电导率会降低,电阻会增大。