Multimodal Autoregressive Pre-Training of Large Vision Encoders
*平等贡献者大型多模态模型中的主导范式是将大型语言解码器与视觉编码器配对。虽然众所周知如何为多模态任务预训练和调整语言解码器,但不太清楚应该如何预训练视觉编码器。事实上的标准是使用判别目标(例如对比损失)预训练视觉编码器。这会导致预训练和生成自回归下游任务之间的不匹配。同时,继语言领域取得成功之后,自回归图像模型已被证明……
FastVLM: Efficient Vision encoding for Vision Language Models
缩放输入图像分辨率对于增强视觉语言模型(VLM)的性能至关重要,尤其是在文本丰富的图像理解任务中。但是,由于大量令牌和高度编码延迟,流行的视觉编码器(例如VIT)在高分辨率下效率低下。在不同的操作分辨率下,可以沿两个轴优化VLM的视觉编码器:减少编码延迟并最小化传递给LLM的视觉令牌的数量,从而降低整体延迟。基于对互动的综合效率分析…
Scaling Laws for Native Multimodal Models
建立可以通过多模式信号有效地感知世界的通用模型一直是一个长期目标。当前的方法涉及分别整合预训练的组件,例如将视觉编码器连接到LLMS和持续的多模式训练。尽管这种方法表现出显着的样本效率,但仍然是一个悬而未决的问题,这是否本质上是优越的。在这项工作中,我们重新审视了本地多模型(NMM)的建筑设计 - 从头开始训练的人 - 并进行广泛的……
Interpreting CLIP: Insights on the Robustness to ImageNet Distribution Shifts
稳健模型和非稳健模型的区别是什么?虽然对于 ImageNet 分布变化,已经表明这种稳健性差异可以主要追溯到训练数据的差异,但到目前为止,尚不清楚这在模型学习方面意味着什么。在这项工作中,我们通过探测具有各种主干(ResNets 和 ViTs)和预训练集(OpenAI、LAION-400M、LAION-2B、YFCC15M、CC12M 和 DataComp)的 16 个稳健零样本 CLIP 视觉编码器的表示空间,并将它们与较少的表示空间进行比较来弥合这一差距……
Zero-Shot Localization with CLIP-Style Encoders
我们如何才能看到视觉编码器所看到的内容?Stephan Widua 在 Unsplash 上的照片想想您最喜欢的预训练视觉编码器。我假设您选择了 CNN(卷积神经网络)或 ViT(视觉变换器)的某种变体。编码器是将图像映射到 d 维向量空间的函数。在此过程中,图像被转换为特征图序列:作者提供的图片。特征图 (w × h × k) 可以被认为是收集的 k 维补丁嵌入的 2D 数组,或者等效地,具有 k 个通道 f₁, … fₖ 的粗略图像 (w × h)。CNN 和 ViT 都以各自的方式将输入图像转换为特征图序列。当图像穿过其层时,我们如何才能看到视觉编码器所看到的内容?零样本定位方法旨在
Contrastive Localized Language-Image Pre-Training
对比语言-图像预训练 (CLIP) 是一种广受赞誉的方法,用于训练视觉编码器生成图像/文本表示,以促进各种应用。最近,CLIP 已被广泛用作多模态大型语言模型 (MLLM) 的视觉主干,以连接图像输入以进行语言交互。CLIP 作为视觉语言基础模型的成功依赖于在图像级别对齐网络爬取的嘈杂文本注释。然而,这样的标准可能不足以满足需要细粒度视觉表示的下游任务,尤其是……
EAGLE: Exploring the Design Space for Multimodal Large Language Models with a Mixture of Encoders
准确解释复杂视觉信息的能力是多模态大型语言模型 (MLLM) 的关键重点。最近的研究表明,增强的视觉感知可显著减少幻觉并提高分辨率敏感任务(例如光学字符识别和文档分析)的性能。最近的几个 MLLM 通过利用视觉编码器的混合来实现这一点。尽管 […]EAGLE:探索使用混合编码器的多模态大型语言模型的设计空间首先出现在 Unite.AI 上。