误差度量关键词检索结果

Wasserstein 距离中的实例最优私有密度估计

Instance-Optimal Private Density Estimation in the Wasserstein Distance

从样本中估计分布的密度是统计学中的一个基本问题。在许多实际情况下,Wasserstein 距离是密度估计的合适误差度量。例如,在估计某个地理区域的人口密度时,较小的 Wasserstein 距离意味着估计值能够大致捕捉到人口质量的位置。在这项工作中,我们研究了 Wasserstein 距离中的差分隐私密度估计。我们设计并分析了可以适应简单实例的该问题的实例优化算法。对于分布……