Sequence Feature Extraction for Malware Family Analysis via Graph Neural Network
恶意软件对我们的设备和生活造成了很大的危害。我们迫切希望了解恶意软件的行为及其造成的威胁。恶意软件的大多数记录文件都是可变长度的、带有时间戳的基于文本的文件,例如事件日志数据和动态分析配置文件。利用时间戳,我们可以将这些数据分类为基于序列的数据,以便进行后续分析。然而,处理可变长度的基于文本的序列很困难。此外,与自然语言文本数据不同,信息安全中的大多数序列数据都具有特定的属性和结构,例如循环、重复调用、噪声等。为了深入分析 API 调用序列及其结构,我们使用图来表示序列,这可以进一步研究信息和结构,例如马尔可夫模型。因此,我们设计并实现了一个注意力感知图神经网络 (AWGCN) 来分析 API