VibE: A Visual Analytics Workflow for Semantic Error Analysis of CVML Models at Subgroup Level
有效的错误分析对于成功开发和部署CVML模型至关重要。理解模型错误的一种方法是总结误差样本的共同特征。在利用非结构化,复杂数据(例如图像)的任务中,这可能尤其具有挑战性,而模式并不总是显而易见的。另一种方法是分析跨预定义类别的错误分布,这要求分析师提前假设潜在的错误原因。形成此类假设,无需访问明确的标签或注释,因此很难……