Train and deploy models on Amazon SageMaker HyperPod using the new HyperPod CLI and SDK
在这篇文章中,我们演示了如何使用新的Amazon Sagemaker HyperPod CLI和SDK来简化通过使用完全碎片数据并行的分布式培训(FSDP)(FSDP)和模型部署进行推理的分布式培训训练和部署大型AI模型的过程。这些工具通过直接命令提供了简化的工作流程,以实现常见任务,同时通过SDK为更复杂的要求提供灵活的开发选项,以及全面的可观察性功能和准备生产的部署功能。
Accelerating Mixtral MoE fine-tuning on Amazon SageMaker with QLoRA
在本文中,我们将演示如何通过使用完全托管的环境和 Amazon SageMaker 训练作业来使用 PyTorch 完全分片数据并行 (FSDP) 和量化低秩自适应 (QLoRA) 对 Mixtral 8x7B 模型进行微调,从而解决模型定制复杂、耗时且通常成本高昂的挑战。