Preventing Context Overload: Controlled Neo4j MCP Cypher Responses for LLMs
超时,截断和结果消毒如何使Cypher输出LLM-Ready The Post the Post to post to tocting offect Overload:LLMS的受控NEO4J MCP Cypher响应首先出现在数据科学方面。
What is Universality in LLMs? How to Find Universal Neurons
独立训练的变压器如何形成同一神经元的帖子,llms中的普遍性是什么?如何找到通用神经元首先出现在数据科学方面。
Coconut: A Framework for Latent Reasoning in LLMs
用简单的术语解释椰子(训练大语言模型以在连续的潜在空间中进行推理)椰子:LLMS中潜在推理的框架首先出现在数据科学方面。
Generating Structured Outputs from LLMs
流行技术概述将LLM的输出限制为预定义的示例,该示例生成了从LLMS生成结构化输出,这首先出现在数据科学方面。
How to Benchmark LLMs – ARC AGI 3
了解如何对LLM进行基准测试,然后尝试新发布的ARC AGI 3 THE THE THE POST如何基准LLMS - ARC AGI 3首先出现在数据科学方面。
Ny AI-arkitektur från Sapient Intelligence ger 100 gånger snabbare resonemang än LLM:er
智慧智能开发了一种新的AI体系结构,称为层次推理模型(HRM),其实现的推理比传统的大型语言模型(LLM)快100倍。人力资源管理(HRM)模仿了人脑的推理和计划方式,这意味着它在同一级别上的性能,有时比在复杂的推理任务上的语言模型更好,即使它[…] Sapient Intelligence的新帖子AI阶段的新AI架构提供了比LLM更快的100倍:您的首次出现在AI新闻中。
From the Community | How we use LLMs matter
MD-PHD学生Humza Khan撰写了有关适应LLM并保持批判性思维的重要性。社区的帖子|我们如何使用LLMS Matter首先出现在Stanford Daily。
Is Your Model Fairly Certain? Uncertainty-Aware Fairness Evaluation for LLMs
最近快速采用大语模型(LLMS)强调了基准对其公平性进行基准测试的关键需求。传统的公平度量指标集中在基于离散准确性的评估(即预测正确性)上,无法捕获模型不确定性的隐式影响(例如,尽管精度相似,但还是对一个组的更高模型置信度更高,而另一组的置信度更高)。为了解决这一限制,我们提出了一个不确定性意识的公平度量,ucerf,可以对模型公平进行精细的评估,与…
Fairness Pruning: Precision Surgery to Reduce Bias in LLMs
从不合理的枪击事件到中立的故事:如何通过选择性修剪后的公平修剪来修复有毒叙事:减少LLMS偏见的精确手术首先出现在数据科学方面。
Context extraction from image files in Amazon Q Business using LLMs
在这篇文章中,我们查看了一个分步实现,用于在Amazon Q Business应用程序中使用自定义文档丰富(CDE)功能来处理独立图像文件。我们将带您浏览CDE中配置的AWS lambda功能来处理各种图像文件类型,并展示该集成如何增强Amazon Q业务提供全面见解的能力的示例场景。
Evaluating Long Range Dependency Handling in Code Generation LLMs
随着语言模型支持越来越大的上下文大小,评估其使其有效使用该上下文的能力变得越来越重要。我们分析了Several Code生成模型在上下文Windows中使用多个STEPKEY检索任务处理远距离依赖性的能力,最高为8K令牌。与喜欢流行的海景测试的测试相比,这些任务在难度方面逐渐降低,并允许对模型功能进行更多细微的评估。我们发现,当功能…
欢迎来到我们的每月摘要,您可以在这里赶上您可能错过的任何AIHUB故事,仔细阅读最新消息,回顾最近的事件等等。本月,我们听说了有关机器人技术的可解释AI,探索隐私的生成模型,并找出Robocup 2025所拥有的东西。准备在Robocup2025开球:A […]
Beyond Code Generation: Continuously Evolve Text with LLMs
长期运行的内容演变和结果分析的介绍《超出代码生成:与LLM》不断发展的文本首先出现在数据科学方面。
Why LLMs Overthink Easy Puzzles but Give Up on Hard Ones
人工智能通过大型语言模型(LLM)及其高级同行,大型推理模型(LRMS),重新定义机器如何处理和生成类似人类的文本。这些模型可以写论文,回答问题,甚至解决数学问题。然而,尽管具有令人印象深刻的能力,但这些模型表现出了好奇的行为:它们经常夸大简单的问题,而[...]为什么llms llms过度思考轻松拼图但放弃了硬性问题,这首先出现在unite.ai上。