在这篇文章中,我们探索了领先的手工艺品市场HandMade.com如何通过使用Amazon Bedrock和Amazon OpenSearch服务实施AI-Driens的产品来对其产品描述进行现代化处理。该解决方案结合了人类的Claude 3.7十四行诗LLM,用于生成描述,亚马逊泰坦文本嵌入式V2用于矢量嵌入的V2以及语义搜索功能,以自动化和增强超过60,000个项目的目录中的产品描述。
亚马逊基岩知识库通过支持亚马逊OpenSearch服务托管群集的支持,扩大了其矢量商店的选项,从而进一步增强了其作为完全管理的检索增强发电(RAG)解决方案的能力。这种增强基于亚马逊基础知识库的核心功能,该功能旨在将基础模型(FMS)与内部数据源连接起来。这篇文章提供了一个全面的,分步的指南,以将亚马逊基础知识基础与OpenSearch服务托管群集作为其矢量商店。
在这篇文章中,我们展示了如何使用Amazon OpenSearch服务作为矢量存储来构建有效的RAG应用程序。
在这篇文章中,我们演示了如何使用自然语言和图像查询使用大型视觉模型(LVM)进行语义视频搜索。我们介绍了一些特定于用例的方法,例如时间框架平滑和聚类,以增强视频搜索性能。此外,我们通过在Amazon Sagemaker AI上使用异步和实时托管选项来演示这种方法的端到端功能,以使用拥抱面部模型中心上的公开可用的LVMS执行视频,图像和文本处理。最后,我们将Amazon OpenSearch与其矢量引擎一起用于低延迟语义视频搜索。
Using Amazon OpenSearch ML connector APIs
OpenSearch提供了广泛的第三方机器学习(ML)连接器,以支持此增强。这篇文章突出显示了这些第三方ML连接器中的两个。我们演示的第一个连接器是Amazon Classend Connector。在这篇文章中,我们向您展示如何使用此连接器调用LangDetect API来检测摄入文档的语言。我们演示的第二个连接器是亚马逊基岩连接器,用于调用Amazon Titan Text Embeddings V2模型,以便您可以从摄入的文档中创建嵌入并执行语义搜索。
在这篇文章中,我们将使用OpenSearch Service构建混合搜索解决方案,该服务由亚马逊泰坦多模式多模式嵌入G1模型通过Amazon Bedrock提供的多模式嵌入。该解决方案演示了如何使用户提交文本和图像作为查询,以从示例零售图像数据集中检索相关结果。
在本文中,我们展示了 OfferUp 如何使用 Amazon Titan Multimodal Embeddings 和 OpenSearch Service 转变其基础搜索架构,从而显著提高用户参与度、提高搜索质量并为用户提供使用文本和图像进行搜索的能力。OfferUp 选择 Amazon Titan Multimodal Embeddings 和 Amazon OpenSearch Service 是因为它们具有完全托管的功能,能够开发出具有高准确度的强大多模态搜索解决方案,并加快搜索和推荐用例的上市时间。
Build a read-through semantic cache with Amazon OpenSearch Serverless and Amazon Bedrock
这篇文章介绍了一种优化基于 LLM 的应用程序的策略。鉴于对高效且经济高效的 AI 解决方案的需求日益增加,我们提出了一种使用重复数据模式的无服务器读取缓存蓝图。借助此缓存,开发人员可以有效地保存和访问类似的提示,从而提高系统的效率和响应时间。
今天,我们很高兴地宣布 Amazon Bedrock 知识库和 Amazon OpenSearch Serverless 中推出了 Amazon Titan 文本嵌入 V2 的二进制嵌入。这篇文章总结了这种新的二进制向量支持的好处,并为您提供了入门信息。
Building a RAG chat-based assistant on Amazon EKS Auto Mode and NVIDIA NIMs
在这篇文章中,我们使用全面的现代技术堆栈来证明实用的基于RAG聊天的助手。该解决方案将NVIDIA NIMS用于LLM推理和文本嵌入服务,而NIM操作员处理其部署和管理。该体系结构将Amazon OpenSearch无用的服务器融合到存储和查询高维矢量嵌入以进行相似性搜索。
УЦСБ в топe Pentest Award 2025. Эксперты компании заняли четыре призовых места
中央执行委员会分析中心的专家在第三次年度伦理黑客奖(Awillix Pentest Award)中获得了四项奖项。总共提交了140份申请。 UTSB的六名专家进入了66名决赛选手的简短名单,并获得了六项提名:“捕鱼” - 最原始的网络钓鱼; “一旦绕过,两个旁路”是信息保护的最“美丽”的手段; Web应用程序的组件; “突破基础架构” - 在网络基础架构的漏洞和操作中取得的成就;在进攻网络安全领域的非标准发现范围内; ** ck逻辑 - 发现最高的逻辑错误。范围的疾病:Andrey Zhukov,Kirill Kravchenye和Anastasia Prazhko在这一提名中,PPSB的
Multi-tenant RAG implementation with Amazon Bedrock and Amazon OpenSearch Service for SaaS using JWT
在这篇文章中,我们引入了一种解决方案,该解决方案使用OpenSearch Service作为多租户RAG中的向量数据存储,使用JWT和FGAC实现数据隔离和路由。该解决方案结合使用JWT和FGAC来实现严格的租户数据访问隔离和路由,因此需要使用OpenSearch服务。
Kyruus builds a generative AI provider matching solution on AWS
在这篇文章中,我们演示了Kyruus Health如何使用AWS服务来构建指南。我们展示了一项全面管理的服务亚马逊Bedrock如何通过单个API从领先的AI公司和亚马逊提供基础模型(FMS),而Amazon Opensearch服务(Amazon Opensearch Service)是托管搜索和分析服务,共同努力了解有关健康问题的日常语言,并将成员与合适的提供者联系起来。
Build real-time travel recommendations using AI agents on Amazon Bedrock
在这篇文章中,我们展示了如何使用Amazon Bedrock构建生成的AI解决方案,该解决方案通过将客户资料和偏好与实时定价数据相结合,从而创建定制的假日软件包。我们演示了如何使用亚马逊基础知识库来获取旅行信息,亚马逊基岩代理以进行实时飞行详细信息以及Amazon OpenSearch无服务器以进行有效的软件包搜索和检索。
Adobe enhances developer productivity using Amazon Bedrock Knowledge Bases
Adobe使用Amazon Bedrock知识库和Amazon OpenSearch无服务器的Amazon Bedrock知识库和矢量引擎合作。该解决方案极大地改善了他们的开发人员支持系统,从而提高了检索准确性20%。在这篇文章中,我们讨论了该解决方案的细节以及Adobe如何提高其开发人员的生产率。
Transforming financial analysis with CreditAI on Amazon Bedrock: Octus’s journey with AWS
在这篇文章中,我们演示了Octus如何将其旗舰产品Creditai迁移到亚马逊基岩,从而改变了投资专业人员如何访问和分析信用情报。我们踏上了Octus的旅程,从管理多个云提供商和昂贵的GPU实例到使用AWS服务(包括Amazon Bedrock,AWS Fargate和Amazon OpenSearch Service)的AWS服务实施简化的,具有成本效益的解决方案。
Simplify automotive damage processing with Amazon Bedrock and vector databases
本博文探讨了一种解决方案,该解决方案利用 AWS 生成式 AI 功能(如 Amazon Bedrock 和 OpenSearch 向量搜索)为保险公司、维修店和车队经理进行损害评估。
在本文中,您将学习如何使用 Amazon Rekognition 从图像查询中提取关键对象,并使用 Amazon Bedrock 的 Amazon Titan Multimodal Embeddings 结合 Amazon OpenSearch Serverless Service 构建反向图像搜索引擎。