SFT关键词检索结果

强化学习通过自适应揭示基本原理进行推理

RL for Reasoning by Adaptively Revealing Rationales

我们提出,来自部分专家演示的强化学习(RL)不仅仅是一种训练启发式方法,而且是解决复杂序列生成任务的一个有前景的框架。监督微调(SFT)依赖于密集的真实标签,随着序列长度的增长,其成本也越来越高。另一方面,强化学习则面临着稀疏奖励和组合大输出空间的问题。我们通过引入自适应回溯(AdaBack)来解决这个问题,这是一种按样本课程学习算法,在训练期间仅显示目标输出的部分前缀。该...