这篇文章是通过 AWS 与 Instituto de Ciência e Tecnologia Itaú (ICTi)(ICTi)(由拉丁美洲最大的私人银行 Itaú Unibanco 维护的 P&D 中心)之间的战略科学合作伙伴关系开发的,探讨了文本和音频情绪分析的技术方面。我们展示了比较多种机器学习 (ML) 模型和服务的实验,讨论了每种方法的权衡和陷阱,并重点介绍了如何编排 AWS 服务来构建强大的端到端解决方案。我们还提供对未来潜在方向的见解,包括针对大型语言模型 (LLM) 的更先进的提示工程,以及扩大基于音频的分析范围以捕获仅文本数据可能会错过的情感线索。