Trainium关键词检索结果

具有成本效益的AI图像生成AWS Trainium和AWS推理的Pixart-Sigma推断

Cost-effective AI image generation with PixArt-Sigma inference on AWS Trainium and AWS Inferentia

这篇文章是我们将在Trainium和推断供电的实例上运行多个扩散变压器的系列中的第一篇文章。在这篇文章中,我们展示了如何将Pixart-Sigma部署到训练和推断供电的实例中。

具有成本效益的AI图像生成AWS Trainium和AWS推理的PixArt-σ推理

Cost-effective AI image generation with PixArt-Σ inference on AWS Trainium and AWS Inferentia

这篇文章是我们将在Trainium和推断供电的实例上运行多个扩散变压器的系列中的第一篇文章。在这篇文章中,我们展示了如何将Pixart-Sigma部署到训练和推断供电的实例中。

亚马逊如何利用其 Trainium 芯片和超级服务器重新定义 AI 硬件市场

How Amazon is Redefining the AI Hardware Market with its Trainium Chips and Ultraservers

人工智能 (AI) 是当今时代最令人兴奋的技术发展之一。它正在改变行业的运作方式,从使用更具创新性的诊断工具改善医疗保健到个性化电子商务购物体验。但在 AI 辩论中经常被忽视的是这些创新背后的硬件。强大、高效且可扩展的硬件 […]The post How Amazon is Redefining the AI Hardware Market with its Trainium Chips and Ultraservers 首先出现在 Unite.AI 上。

使用 AWS Trainium 在 SageMaker HyperPod 上对 Llama 3 进行 PEFT 微调 ​​

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

在这篇博文中,我们展示了如何使用 AWS Trainium 上的 PEFT 和 SageMaker HyperPod 对 Meta Llama 3 模型进行高效的监督微调。我们使用 HuggingFace 的 Optimum-Neuron 软件开发工具包 (SDK) 将 LoRA 应用于微调作业,并使用 SageMaker HyperPod 作为主要计算集群在 Trainium 上执行分布式训练。使用 LoRA 监督微调 Meta Llama 3 模型,您可以进一步将微调模型的成本降低高达 50%,并将训练时间缩短 70%。

使用 Datadog 增强 AWS Trainium 和 AWS Inferentia 的可观察性

Enhanced observability for AWS Trainium and AWS Inferentia with Datadog

本博文将引导您了解 Datadog 与 AWS Neuron 的新集成,它通过提供对资源利用率、模型执行性能、延迟和实时基础设施运行状况的深度可观察性来帮助您监控 AWS Trainium 和 AWS Inferentia 实例,使您能够优化机器学习 (ML) 工作负载并实现大规模高性能。

使用 AWS Inferentia 和 AWS Trainium 在 Amazon SageMaker JumpStart 中经济高效地部署 Meta Llama 3.1 模型

Deploy Meta Llama 3.1 models cost-effectively in Amazon SageMaker JumpStart with AWS Inferentia and AWS Trainium

我们很高兴地宣布,Meta Llama 3.1 8B 和 70B 推理支持已在 Amazon SageMaker JumpStart 中的 AWS Trainium 和 AWS Inferentia 实例上推出。 Trainium 和 Inferentia 由 AWS Neuron 软件开发工具包 (SDK) 提供支持,可提供高性能并将 Meta Llama 3.1 的部署成本降低高达 50%。在这篇文章中,我们演示了如何在 SageMaker JumpStart 中的 Trainium 和 Inferentia 实例上部署 Meta Llama 3.1。

关于 AWS Trainium 和 Inferentia 的可编程性

On the Programmability of AWS Trainium and Inferentia

使用自定义运算符加速 AI/ML 模型训练 — 第 4 部分照片由 Agata Bres 在 Unsplash 上拍摄在这篇文章中,我们继续探索通过自定义运算符开发来优化机器学习 (ML) 工作负载运行时的机会。这一次,我们重点介绍 AWS Neuron SDK 提供的工具,用于在 AWS Trainium 和 AWS Inferentia 上开发和运行新内核。随着推动 AI 革命的低级模型组件(例如注意层)的快速发展,用于训练和运行 ML 模型的加速器的可编程性至关重要。专用 AI 芯片必须为广泛使用且影响深远的通用 GPU (GPGPU) 开发框架(例如 CUDA 和 Triton)提供有

AWS Inferentia 和 Trainium 上的 AI 模型优化

AI Model Optimization on AWS Inferentia and Trainium

使用 AWS Neuron SDK 加速 ML 的技巧照片由 julien Tromeur 在 Unsplash 上拍摄我们正处于人工智能的黄金时代,尖端模型颠覆了行业并准备改变我们所知的生活。推动这些进步的是越来越强大的人工智能加速器,例如 NVIDIA H100 GPU、Google Cloud TPU、AWS 的 Trainium 和 Inferentia 芯片等。随着选项数量的增加,选择最适合我们的机器学习 (ML) 工作负载的平台的挑战也随之而来——考虑到与 AI 计算相关的高成本,这是一个至关重要的决定。重要的是,对每个选项进行全面评估需要确保我们最大限度地利用它以充分利用其功能。

使用 NinjaTech AI 和 AWS Trainium 实现生产力代理的未来

The future of productivity agents with NinjaTech AI and AWS Trainium

NinjaTech AI 的使命是通过使用快速且经济实惠的人工智能 (AI) 代理来处理耗时的复杂任务,从而提高每个人的工作效率。我们最近推出了 MyNinja.ai,这是世界上第一个多代理个人 AI 助理,以推动我们的使命。MyNinja.ai 是从头开始构建的,使用专门的代理,这些代理能够代表您完成任务,包括安排会议、从网络上进行深入研究、生成代码和帮助编写。这些代理可以将复杂的多步骤任务分解为分支解决方案,并且能够动态评估生成的解决方案,同时不断从过去的经验中学习。所有这些任务都是以完全自主和异步的方式完成的,让您可以继续您的一天,而 Ninja 可以在后台处理这些任务,并在需要您的输入

为您的业务需求量身定制基础模型:布格,微调和混合方法的综合指南

Tailoring foundation models for your business needs: A comprehensive guide to RAG, fine-tuning, and hybrid approaches

Rufus依靠许多组件来提供其客户体验,包括Foundation LLM(响应生成)和查询计划者(QP)模型,以进行查询分类和检索增强。这篇文章的重点是QP模型如何使用以平行解码为中心的投机解码(SD)(SD)以及AWS AI芯片来满足Prime Day的需求。通过将平行解码与AWS Trainium和推理芯片相结合,Rufus的响应时间更快,推理成本降低了50%,并且在高峰流量期间无缝可扩展性。

rufus如何使用AWS AI芯片和平行解码

How Rufus doubled their inference speed and handled Prime Day traffic with AWS AI chips and parallel decoding

AI驱动的购物助理 Rufus依靠许多组件来提供其客户体验,包括Foundation LLM(响应生成)和查询计划者(QP)模型,以进行查询分类和检索增强。这篇文章的重点是QP模型如何使用以平行解码为中心的投机解码(SD)(SD)以及AWS AI芯片来满足Prime Day的需求。通过将平行解码与AWS Trainium和推理芯片相结合,Rufus的响应时间更快,推理成本降低了50%,并且在高峰流量期间无缝可扩展性。 在这篇文章中,我们向您展示了如何实施和评估三种强大的技术,以根据您的业务需求来量身定制FMS:抹布,微调和混合方法,结合了这两种方法。我们提供现成的代码,以帮助您尝试这些方法,

使用 vLLM 和带有 AWS AI 芯片的 Amazon EC2 实例提供 LLM

Serving LLMs using vLLM and Amazon EC2 instances with AWS AI chips

在过去一年中,大型语言模型 (LLM) 和生成式 AI 的使用呈爆炸式增长。随着强大的公开基础模型的发布,用于训练、微调和托管您自己的 LLM 的工具也变得民主化。在 AWS Trainium 和 Inferentia 上使用 vLLM 可以托管 LLM 以实现高性能 [...]

亚马逊承诺投入 1.1 亿美元用于人工智能研究

Amazon Commits $110 Million to AI Research

重要性:亚马逊投资 1.1 亿美元进行 AI 研究,为大学提供 Trainium 等先进工具以取得突破。

AWS AI 芯片为 AWS 上的 Llama 3.1 模型提供高性能和低成本

AWS AI chips deliver high performance and low cost for Llama 3.1 models on AWS

今天,我们很高兴地宣布 AWS Trainium 和 AWS Inferentia 支持 Llama 3.1 模型的微调和推理。Llama 3.1 系列多语言大型语言模型 (LLM) 是一组预先训练和指令调整的生成模型,大小分别为 8B、70B 和 405B。在上一篇文章中,我们介绍了如何在 Amazon SageMaker JumpStart 中基于 AWS Trainium 和 Inferentia 的实例上部署 Llama 3 模型。在这篇文章中,我们概述了如何开始在 AWS AI 芯片上微调和部署 Llama 3.1 系列模型,以实现其性价比优势。

使用 AWS Neuron Monitor 容器扩展和简化 Amazon EKS 上的 ML 工作负载监控

Scale and simplify ML workload monitoring on Amazon EKS with AWS Neuron Monitor container

Amazon Web Services 很高兴地宣布推出 AWS Neuron Monitor 容器,这是一种创新工具,旨在增强 Amazon Elastic Kubernetes Service (Amazon EKS) 上 AWS Inferentia 和 AWS Trainium 芯片的监控功能。该解决方案简化了 Prometheus 和 Grafana 等高级监控工具的集成,使您能够 [...]