FastVLM: Efficient Vision Encoding for Vision Language Models
视觉语言模型(VLMS)可与文本输入一起视觉理解。它们通常是通过将视觉令牌从验证的视觉编码传递到预处理的大型语言模型(LLM)通过投影层来构建的。通过利用视觉编码器的丰富视觉表示以及LLM的世界知识和推理能力,VLM可用于广泛的应用程序,包括可访问性助手,UI导航,机器人技术和GAMING.VLM精度通常可以通过更高的输入图像解决,可以在精确的情况下提高精确折磨,> vlm的精度可以提高。
ILuvUI: Instruction-Tuned Language-Vision Modeling of UIs from Machine Conversations
多模式视觉模型(VLMS)从对图像和语言的融合理解中启用了强大的应用程序,由于缺乏UI培训数据,Butmany在UI任务上的表现较差。在本文中,我们通过将现有基于像素的方法与大语言模型(LLM)相结合,以将VLM的配对文本构想数据与UI域生成对UI域。与Plior Art不同,我们的方法不需要人提供的注释,并且可以应用于UI屏幕截图的任何数据集。我们生成了335K的对话示例的adataset,并与涵盖问答的UI配对,UI…
Improve Vision Language Model Chain-of-thought Reasoning
视觉语言模型(VLMS)中的思考链(COT)推理对于改善无法释放性和可信赖性至关重要。但是,当前的培训食谱通常依赖于以统一理由为主导的ondatasets。在这项工作中,我们表明对简短答案的VLM进行训练会导致较差的推理任务,要求详细解释。为了解决这一局限性,我们提出了一个两阶段的培训后策略,该术时扩展了简短的答案数据以增强COT推理的用法。首先,用……
The ‘Download More Labels!’ Illusion in AI Research
当前机器学习研究中的一种常见观点是,机器学习本身可用于提高AI数据集注释的质量,尤其是旨在用于视觉模型(VLMS)的图像标题。这种思维方式是由人类注释的高成本驱动的,并且监督注释者的增加负担[…]帖子“下载更多标签!” AI研究中的幻觉首先出现在Unite.ai上。
AI-RAG 和图表的新趋势。GRAG。GNN-RAG。属性图。统一 RAG+LangGraph。GenAI 思维模式。Transformer Agents 2.0。Falcon 2.0 11B LLMS/VLMS。ToonCrafter。MusePose。ColdFusion。SymbCoT。