embed关键词检索结果

Amazon Nova 多模式嵌入实用指南

A practical guide to Amazon Nova Multimodal Embeddings

在本文中,您将了解如何为媒体资产搜索系统、产品发现体验和文档检索应用程序配置和使用 Amazon Nova Multimodal Embeddings。

Palo Alto Networks 如何使用 Amazon Bedrock 增强设备安全性基础设施日志分析

How Palo Alto Networks enhanced device security infra log analysis with Amazon Bedrock

Palo Alto Networks 的设备安全团队希望检测潜在生产问题的早期预警信号,以便为中小企业提供更多时间来应对这些新出现的问题。他们与 AWS GenAIIC 合作开发由 Amazon Bedrock 提供支持的自动日志分类管道。在这篇文章中,我们讨论 Amazon Bedrock 如何通过 Anthropic 的 Claude Haiku 模型和 Amazon Titan Text Embeddings 协同工作来自动分类和分析日志数据。我们探索这个自动化管道如何检测关键问题,检查解决方案架构,并分享实现可衡量的运营改进的实施见解。

使用 Amazon Nova Multimodal Embeddings 统一矢量搜索扩展创意资产发现

Scale creative asset discovery with Amazon Nova Multimodal Embeddings unified vector search

在本文中,我们将介绍如何使用 Amazon Nova 多模式嵌入来检索特定视频片段。我们还回顾了一个现实世界的用例,其中 Nova Multimodal Embeddings 在针对 170 个游戏创意资产的库进行测试时,实现了 96.7% 的召回成功率和 73.3% 的高精度召回率(返回前两个结果中的目标内容)。该模型还展示了强大的跨语言功能,并且跨多种语言的性能下降最小。