Advancing Egocentric Video Question Answering with Multimodal Large Language Models
以当前的视频问答(QA)需要模型来处理长途时间推理,第一人称视角以及诸如频繁的摄像机运动之类的专业挑战。本文系统地评估了QAEGO4DV2上的专有和开源多模型模型(MLLMS) - 源自Qaego4d的EgeCentric视频的精制数据集。使用零摄像机和CloseQA设置的零摄像和微调方法评估了四个流行的MLLM(GPT-4O,GEMINI-1.5-PRO,VIDEO-LALAVA-7B和QWEN2-VL-7B-INSTRUCT)。我们将QAEGO4DV2介绍给MitigateAnnotation Noise…
Benchmarking Best Open-Source Vision Language Models: Gemma 3 vs. MiniCPM vs. Qwen 2.5 VL
基准测试GEMMA-3-4B,minicpm-O 2.6和QWEN2.5-VL-7B-7B - 延迟,吞吐量和可伸缩性。
Deploy Qwen models with Amazon Bedrock Custom Model Import
现在,您可以为qwen2,qwen2_vl和qwen2_5_vl架构导入自定义权重,包括QWEN 2、2.5编码器,QWEN 2.5 VL和QWQ 32B之类的型号。在这篇文章中,我们介绍了如何使用Amazon BedRock自定义模型导入的如何部署QWEN 2.5型号,这使他们可以在AWS基础架构中以有效的成本在AWS基础架构中使用最先进的AI功能。