New capabilities in Amazon SageMaker AI continue to transform how organizations develop AI models
在这篇文章中,我们分享了Sagemaker AI中的一些新创新,这些创新可以加速您的构建和培训AI模型。这些创新包括SageMaker Hyperpod中的新可观察性功能,在HyperPod上部署JumpStart模型的能力,从本地开发环境中与SageMaker AI的远程连接以及完全管理的MLFLOW 3.0。
Accelerate foundation model development with one-click observability in Amazon SageMaker HyperPod
With a one-click installation of the Amazon Elastic Kubernetes Service (Amazon EKS) add-on for SageMaker HyperPod observability, you can consolidate health and performance data from NVIDIA DCGM, instance-level Kubernetes node exporters, Elastic Fabric Adapter (EFA), integrated file systems, Kubernet
Accelerating generative AI development with fully managed MLflow 3.0 on Amazon SageMaker AI
在这篇文章中,我们探讨了Amazon Sagemaker如何为MLFLOW 3.0提供全面管理的支持,简化了AI实验并加速了您从想法到生产的生成性AI旅程。该版本将托管的MLFlow从实验跟踪转换为提供端到端可观察性,从而缩短了生成AI开发的市场时间。
在这篇文章中,我们宣布了亚马逊萨吉马制造商Hyperpod支持,用于从SageMaker Jumpstart部署基础模型,以及来自Amazon S3或Amazon FSX的自定义或微调模型。这种新功能使客户可以在相同的HyperPod计算资源上训练,微调和部署模型,从而最大程度地利用整个模型生命周期的资源利用率。
Supercharge your AI workflows by connecting to SageMaker Studio from Visual Studio Code
AI开发人员和机器学习(ML)工程师现在可以直接从其本地Visual Studio代码(VS代码)直接使用Amazon Sagemaker Studio的功能。借助此功能,您可以使用自定义的本地VS代码设置,包括AI辅助开发工具,自定义扩展和调试工具,同时访问SageMaker Studio中的计算资源和数据。在这篇文章中,我们向您展示如何将本地VS代码连接到SageMaker Studio开发环境,以在访问Amazon SageMaker AI计算资源时使用自定义的开发环境。
Configure fine-grained access to Amazon Bedrock models using Amazon SageMaker Unified Studio
在这篇文章中,我们演示了如何使用SageMaker Unified Studio和AWS Identity and Access Management(IAM)来为Amazon Bedrock模型建立强大的许可框架。我们展示了管理员如何在安全,协作的环境中精确管理哪些用户和团队可以访问特定模型。我们指导您创建粒状权限以控制模型访问,并使用常见企业治理方案的代码示例。
Cohere Embed 4 multimodal embeddings model is now available on Amazon SageMaker JumpStart
Cohere Embered 4多模式嵌入模型现在通常可以在Amazon Sagemaker Jumpstart上获得。 Embed 4模型是为多模式业务文档构建的,具有领先的多语言功能,并且对跨关键基准测试的嵌入3提供了显着的改进。在这篇文章中,我们讨论了这种新模型的好处和功能。我们还可以使用Sagemaker Jumpstart引导您完成如何部署和使用嵌入4型号的型号。
今天,我们很高兴地宣布,Qwen3是QWEN家族中最新一代的大型语言模型(LLMS),可通过亚马逊基岩市场和Amazon Sagemaker Jumpstart获得。通过此启动,您可以在0.6B,4B,8B和32B参数尺寸中部署QWEN3模型,以构建,实验和负责任地扩展您的生成AI应用程序。在这篇文章中,我们演示了如何在Amazon Bedrock Marketplace和Sagemaker Jumpstart上使用Qwen3开始。
End-to-End model training and deployment with Amazon SageMaker Unified Studio
In this post, we guide you through the stages of customizing large language models (LLMs) with SageMaker Unified Studio and SageMaker AI, covering the end-to-end process starting from data discovery to fine-tuning FMs with SageMaker AI distributed training, tracking metrics using MLflow, and then de
在这篇文章中,我们展示了如何使用Amazon OpenSearch服务作为矢量存储来构建有效的RAG应用程序。
Use Amazon SageMaker Unified Studio to build complex AI workflows using Amazon Bedrock Flows
在这篇文章中,我们演示了如何使用SageMaker Unified Studio使用Amazon Bedrock Flow创建复杂的AI工作流程。
Build and deploy AI inference workflows with new enhancements to the Amazon SageMaker Python SDK
在这篇文章中,我们提供了用户体验的概述,详细介绍了如何使用SageMaker Python SDK使用多个模型来设置和部署这些工作流程。我们介绍构建复杂推理工作流程,将它们部署到sagemaker端点的示例,并调用它们进行实时推理。
Using Amazon SageMaker AI Random Cut Forest for NASA’s Blue Origin spacecraft sensor data
在这篇文章中,我们演示了如何使用SageMaker AI应用随机砍伐森林(RCF)算法来检测NASA和Blue Origin的Spacecraft位置,速度和季度取向数据的异常,并证明了Lunar Deorbit,Descent和Landing Sensors(Boddl-tp)的蓝色起源。
Power Your LLM Training and Evaluation with the New SageMaker AI Generative AI Tools
今天,我们很高兴向SageMaker AI客户介绍文本排名和问答模板。在这篇博客文章中,我们将引导您介绍如何在萨格人中设置这些模板,以创建用于培训大型语言模型的高质量数据集。
No-code data preparation for time series forecasting using Amazon SageMaker Canvas
Amazon Sagemaker Canvas提供简化数据争吵的无代码解决方案,使所有用户都可以访问时间序列,而不管其技术背景如何。在这篇文章中,我们探讨了萨格人的画布和萨格人数据牧马人如何提供无代码数据准备技术,以使所有背景的用户能够在单个界面中自信地准备数据并构建时间序列预测模型。
Build a scalable AI video generator using Amazon SageMaker AI and CogVideoX
近年来,人工智能和机器学习(AI/ML)技术的快速发展彻底改变了数字内容创建的各个方面。一个特别令人兴奋的发展是视频发电能力的出现,这为各个行业的公司提供了前所未有的机会。这项技术允许创建可以是[…]
在这篇文章中,我们讨论了如何通过使用IDE和SageMaker Studio的IDE和工具以及与Amazon Eks的Sagemaker Hyperpod的可扩展性和弹性来改善和加快数据科学家的开发经验。该解决方案通过使用AWS服务提供的治理和安全功能来简化集中系统的系统管理员的设置。
Training Llama 3.3 Swallow: A Japanese sovereign LLM on Amazon SageMaker HyperPod
Tokyo科学院已经成功训练了Llama 3.3 Swallow,这是一种使用Amazon Sagemaker Hyperpod的700亿参数大语模型(LLM),具有增强的日本能力。该模型在日语任务中表现出了卓越的性能,表现优于GPT-4O-Mini和其他领先的模型。该技术报告详细介绍了项目期间开发的培训基础设施,优化和最佳实践。