BanditPAM: Almost Linear-Time k-medoids Clustering via Multi-Armed Bandits
TL;DR想要比 \(k\)-means 更好的东西吗?我们最先进的 NeurIPS \(k\)-medoids 算法 BanditPAM 现已公开!\(\texttt{pip install banditpam}\),您就可以开始了!与 \(k\)-means 问题一样,\(k\)-medoids 问题是一个聚类问题,我们的目标是将数据集划分为不相交的子集。然而,在 \(k\)-medoids 中,我们要求聚类中心必须是实际数据点,这允许对聚类中心进行更好的解释。\(k\)-medoids 还可以更好地处理任意距离度量,因此如果您使用 \(L_1\) 之类的度量,您的聚类可以对异常值更具鲁棒
BanditPAM: Almost Linear-Time k-medoids Clustering via Multi-Armed Bandits
TL;DR想要比 \(k\)-means 更好的东西吗?我们最先进的 NeurIPS \(k\)-medoids 算法 BanditPAM 现已公开!\(\texttt{pip install banditpam}\),您就可以开始了!与 \(k\)-means 问题一样,\(k\)-medoids 问题是一个聚类问题,我们的目标是将数据集划分为不相交的子集。然而,在 \(k\)-medoids 中,我们要求聚类中心必须是实际数据点,这允许对聚类中心进行更好的解释。\(k\)-medoids 还可以更好地处理任意距离度量,因此如果您使用 \(L_1\) 之类的度量,您的聚类对异常值会更稳健。尽