Faster Rates for Private Adversarial Bandits
我们为对抗性土匪和土匪的问题设计了新的私人算法,并提供了专家建议。对于对抗性匪徒,我们简单有效地转换了任何非私有的匪徒算法到私人强盗算法。实例化我们使用现有的非私有强盗算法的转换给出了O(Ktε)O \ left的上限(\ frac {\ frac {\ sqrt {kt}}} {\ sqrt {\ sqrt {\ varepsilon}}}} O(ktlog(kt)ε)o \ left(\ frac {\ sqrt {kt \ log(kt)}}} {\ varepsilon} \ right)o(εktlog(kt))特别是我们的算法…
Tracking the Best Expert Privately
我们在动态遗憾的情况下以专家建议为预测的问题设计了不同的私人算法,也被称为跟踪最佳专家。我们的工作介绍了三种自然类型的对手,这些对手,随机分布,遗忘和适应性的变化,以及在所有三个情况下都以次线性后悔的设计算法。特别是,在变化的随机对手下,分布可能会改变SSS时间,我们提供了ε\varepsilonε-划分的私人算法,其预期的动态遗憾最多是O(stlog(nt) +slog(nt) +slog(nt)ε\ weft(\ sqrt(\ sqrt)
Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions
我们研究了具有重尾梯度的差分隐私随机凸优化 (DP-SCO) 问题,其中我们假设样本函数的 Lipschitz 常数上有 kthk^{\text{th}}kth 矩界限,而不是统一界限。我们提出了一种新的基于约简的方法,使我们能够在重尾设置中获得第一个最优利率(最多对数因子),在 (ε,δ)(\varepsilon, \delta)(ε,δ)-近似下实现误差 G2⋅1n+Gk⋅(dnε)1−1kG_2 \cdot \frac 1 {\sqrt n} + G_k \cdot (\frac{\sqrt d}{n\varepsilon})^{1 - \frac 1 k}G2⋅n1+Gk⋅(n
Private Online Learning via Lazy Algorithms
我们研究隐私在线学习问题,具体来说,就是专家在线预测 (OPE) 和在线凸优化 (OCO)。我们提出了一种新的转换方法,将惰性在线学习算法转换为隐私算法。我们利用现有的惰性算法将我们的转换应用于差异隐私 OPE 和 OCO,以解决这些问题。我们的最终算法获得了遗憾,这显著改善了高隐私制度 ε≪1\varepsilon \ll 1ε≪1 中的遗憾,获得 Tlogd+T1/3log(d)/ε2/3\sqrt{T \log d} + T^{1/3} \log(d)/\varepsilon^{2/3}Tlogd+T1/3log(d)/ε2/3 for…
Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages
我们研究了隐私混洗模型中的隐私向量均值估计问题,其中 nnn 个用户各自在 ddd 维度中都有一个单位向量。我们提出了一种新的多消息协议,该协议使用每个用户 O~(min(nε2,d))\tilde{\mathcal{O}}\left(\min(n\varepsilon^2,d)\right)O~(min(nε2,d)) 条消息来实现最优误差。此外,我们表明,任何实现最优误差的(无偏)协议都要求每个用户发送 Ω(min(nε2,d)/log(n))\Omega(\min(n\varepsilon^2,d)/\log(n))Ω(min(nε2,d)/log(n)) 条消息,证明了我们的消息