生物燃料被认为是以可持续的方式满足未来能源供应需求的杰出替代化石燃料。通常,它们是由木质纤维素原料生产的。与富含浓度蛋白的原料相比,生物乙醇生产的木质纤维素原材料的糖化是一个繁琐的过程。各种富含菊粉的原料,即。耶路撒冷朝鲜蓟,菊苣,大丽花,芦笋sp。等。也被利用用于生产生物燃料,即。生物乙醇,丙酮,丁醇等。富含菊粉的原料的无处不在的能力和大量菊粉的存在使它们成为生产生物燃料的强大底物。不同的策略,即。已经探索了分离的水解和发酵,同时的糖化和发酵以及巩固的生物处理,以将富含二氨基蛋白的原料转化为生物燃料。这些生物处理策略是简单有效的。本评论详细阐述了生物燃料生产的富含浓度蛋白的原料的预期。为富含菊粉的原料转换而利用的生物过程策略也得到了强调。
GenoScreen 拥有基于新一代测序 (NGS) 的试剂盒,可同时识别分枝杆菌种类、进行基因分型并预测结核分枝杆菌复合群 (MTBC) 菌株的耐药性;该试剂盒 (Deeplex® Myc-TB) 可直接用于临床样本 (1) 。该检测依赖于单个 24 重扩增子混合物的深度测序,针对与一线和二线抗结核药物(利福平、异烟肼、吡嗪酰胺、乙胺丁醇、氟喹诺酮类、阿米卡星、卡那霉素、卷曲霉素、链霉素、乙硫异烟胺、贝达喹啉、氯法齐明和利奈唑胺)耐药性相关的 18 个主要 MTBC 基因区域。 hsp65 基因是分枝杆菌种属识别的靶标,而 spoligotyping 靶标(CRISPR/直接重复 [DR] 基因座)和耐药相关靶标中的系统发育单核苷酸多态性 (SNP) 用于 MTBC 菌株基因分型。
1799.598 0.000 400.000在PCSIR建立先进的基因编辑设施以及相关的设备和系统,这些设备和系统可用于营养和治疗目的等广泛目的,从而导致本地商业/工业制造业。根据研发,设计,开发和随后的生物食品,生物化学物质,生物制药,生物肥料,生物农药等的商业生产,发展本地应变/基因工程能力。 div> div>包括工业重要性的生物分子,包括维生素,omega-3,生物乙醇,生物丁醇,工业酶,单细胞蛋白,家禽饲料添加剂。开发测试设施,以确保发达的生物产品的质量保证,然后其随后的商业化。利用现有的商业活动,这项努力可以为该国提供与生物技术相关的业务的新远景,从而朝着基于知识的经济增长迈进。通过在基因编辑的高级技术中进行培训,研讨会,研讨会和研究能力来增强能力。因此,通过利用土著资源并在将来节省宝贵的外汇来提供技术服务。n12在PCSIR Laboratories Complex,Lahore,Peshawar和Karachi
背景:需要更好的工具来评估新的或重新利用的 TB 药物。为此目的,人们提倡使用全血杀菌活性 (WBA) 测定法。我们研究了 WBA 测定法中的转录反应是否类似于体内的 TB 反应,以及该方法是否可能另外揭示作用机制。结果:在与利福平、异烟肼、吡嗪酰胺和乙胺丁醇的标准组合孵育的 WBA 中,1798 个 (79%) 差异表达基因中的 1422 个也在服用相同药物组合的患者获得的痰液中表达 (P < 0.0001);这些基因包括已确定的治疗反应基因。在与标准药物单独孵育的 WBA 中,或与莫西沙星或法罗培南 (与阿莫西林和克拉维酸) 孵育的 WBA 中的基因表达谱按单个药物暴露聚类。检测到单个药物的不同途径,尽管只有异烟肼与已知的药物作用机制相关。
杭州盛廷医疗科技有限公司拥有一款基于靶向二代测序(NGS)的试剂盒,用于同时识别分枝杆菌种类并预测结核分枝杆菌复合群(MTBC)菌株的耐药性。该试剂盒 TBseq® 可直接应用于痰液、支气管肺泡灌洗液、胸腔积液或分枝杆菌阳性培养物等临床标本。它依赖于引物多重扩增混合物的深度测序,针对与一线和二线抗结核(抗 TB)药物(利福平、异烟肼、吡嗪酰胺、乙胺丁醇、氟喹诺酮类、阿米卡星、卡那霉素、卷曲霉素、链霉素、对氨基水杨酸、环丝氨酸、乙硫异烟胺/丙硫异烟胺、贝达喹啉、氯法齐明和利奈唑胺)耐药相关的 21 种主要 MTBC 基因。分枝杆菌种属鉴定是通过针对 16S 和 hsp65 基因区域进行的。
自1900年代初期其在丙酮丁醇 - 乙醇(ABE)发酵中的第一个工业应用以来,梭状芽胞杆菌发现了大量的生物量生物量生物填充应用。Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H 2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives.有利地,几种梭形菌株能够使用廉价的原料,例如木质纤维素生物量,食物浪费,甘油或C1-气(CO 2,CO),以赋予它们作为较少依赖化石燃料和减少绿化温室气体发射的流程的主要参与者。本综述旨在提供旨在开发梭状芽胞杆菌介导的生物量发酵过程的研究进度的调查,尤其是关于代谢工程的应变改善。
大脑中脑衍生的神经营养因子(BDNF)的上调可以帮助预防和治疗抑郁症。 bdnf在各种周围组织以及大脑中合成,可以通过血脑屏障到达大脑。 因此,上调上调的食物可能有助于抑郁管理。 我们先前使用人肾脏腺癌ACHN细胞系具有白色foxtail小米(WFM)的BDNF-UP调节作用,该细胞系能够产生和分泌BDNF。 但是,尚不清楚其他foxtail小米品种是否也可以上调BDNF。 在此,我们检查了红色Foxtail小米(RFM)对体外和体内BDNF生产的影响。 RFM甲醇提取物在ACHN细胞的培养基中显着提高了BDNF水平,并且水平高于WFM处理的水平。 喂养含有20%RFM的标准饮食的大鼠的血清BDNF浓度明显高于对照中的饮食。 此外,RFM甲醇提取物的丁醇部分显着提高了ACHN细胞培养基中的BDNF水平,并在ACHN细胞中上调BDNF mRNA表达。 我们的结果表明,RFM具有具有BDNF诱导活性的食物材料。大脑中脑衍生的神经营养因子(BDNF)的上调可以帮助预防和治疗抑郁症。bdnf在各种周围组织以及大脑中合成,可以通过血脑屏障到达大脑。因此,上调上调的食物可能有助于抑郁管理。我们先前使用人肾脏腺癌ACHN细胞系具有白色foxtail小米(WFM)的BDNF-UP调节作用,该细胞系能够产生和分泌BDNF。但是,尚不清楚其他foxtail小米品种是否也可以上调BDNF。在此,我们检查了红色Foxtail小米(RFM)对体外和体内BDNF生产的影响。RFM甲醇提取物在ACHN细胞的培养基中显着提高了BDNF水平,并且水平高于WFM处理的水平。喂养含有20%RFM的标准饮食的大鼠的血清BDNF浓度明显高于对照中的饮食。此外,RFM甲醇提取物的丁醇部分显着提高了ACHN细胞培养基中的BDNF水平,并在ACHN细胞中上调BDNF mRNA表达。我们的结果表明,RFM具有具有BDNF诱导活性的食物材料。
为推动明尼苏达州 SAF 枢纽的发展,美国联邦航空局宣布向 Gevo Inc. 拨款 1680 万美元,将现有的乙醇和异丁醇生产厂改造成酒精制航空燃料 SAF 设施。11 该项目是《2022 年通胀削减法案》为 SAF 技术开发和生产计划拨款 2.91 亿美元的一部分。此外,Flint Hills Resources 正在与达美航空合作,在其位于明尼苏达州罗斯蒙特的 Pine Bend 炼油厂开发一个混合设施,该设施将于 2025 年底完工,将 SAF 与现有的航空燃料生产混合。12 然后,这些燃料将通过工厂和机场之间现有的航空燃料管道输送到明尼苏达州圣保罗国际机场。为了进一步激励明尼苏达州 SAF 的生产和使用,明尼苏达州于 2023 年通过了一项可持续航空燃料税收抵免政策。该政策规定,在明尼苏达州生产或混合并用于从该州起飞的飞机的 SAF 每加仑可获得 1.50 美元的税收抵免。十三
摘要:枯草芽孢杆菌是一种多功能的微生物细胞工厂,可以生产有价值的蛋白质和增值化学物质。长片段编辑技术对于加速细菌基因组工程以获得理想且遗传稳定的宿主菌株至关重要。在这里,我们开发了一种有效的CRISPR-CAS9方法,用于枯草芽孢杆菌基因组中的大规模和无疤痕基因组工程,该方法的阳性率为100%,最多可删除高达134.3 kb的DNA片段,是先前报告的3.5倍。还研究了使用异源NHEJ系统,线性供体DNA和各种供体DNA长度对工程效率的影响。然后将CRISPR-CAS9方法用于枯草芽孢杆菌基因组简化和一系列个体和累积的缺失突变体的构建,这些突变体进一步筛选了新一代生物燃料的异丁醇过度生产剂。这些结果表明该方法是一种强大的基因组工程工具,用于构建和筛选具有增强功能的工程宿主菌株,突出了合成生物学和代谢工程的潜力。
基于石油的塑料通常用于轻质容器产品,尤其是在食品包装行业。但是,它具有不利的环境影响,并可能导致废物积累和消费问题[1-3]。因此,研究人员对创建生物塑料和可生物降解的塑料感兴趣以解决此问题。聚对苯二甲酸酯(PET)是可以转化为生物塑料的聚合物之一,称为生物多乙二烯二苯二甲酸酯(Bio-PET),其与PET具有相同的结构和品质[3]。它具有相似的化学结构,但它是从自然资源或基于生物的原料中合成的,以形成基于生物的纯化苯甲酸(Bio-PTA)和基于生物的单乙二醇。商业生物-PET由30%生物 - 单乙二醇(Bio-Meg)和70%纯化的苯甲酸(PTA)组成,因为基于石油的原料是基于Bio的terephthalic Acid的过程,由于难以生产Biomass para-xylene para-xylene con terepharic actects [4,5]。可以使用不同的方法来合成生物PTA,例如ISO丁醇法,粘酸方法,柠檬酸法,柠檬烯方法或狂热方法[5-7],但据我们所知,它仍然处于实验室规模上。因此,Bio-Pet通常用于行业,这项工作由30%的Bio-Meg和基于石油的纯化