ATJ 酒精喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 粗棕榈油 CTBE 巴西生物乙醇科学技术实验室。DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精炼棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井泵 WTWa醒来吧
ATJ 酒精喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 粗棕榈油 CTBE 巴西生物乙醇科学技术实验室。 DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能值 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精制棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井至泵 WTWa 井至唤醒
非洲叶 ( Vernonia amygdalina Delille) 对几种癌细胞的细胞毒活性较低。我们评估了它与阿霉素联合治疗对腔内乳腺癌细胞 MCF-7 和 MCF-7/HER2 细胞的效果。提取干叶以收集己烷、丁醇、二氯甲烷 (DCM) 和乙酸乙酯 (EA) 提取物,然后使用 MTT 检测法测试它们对 MCF7 和 MCF7/HER2 细胞的细胞毒活性。然后将最有潜力的提取物与阿霉素联合治疗以检查细胞毒性,随后用流式细胞术进行细胞周期和凋亡分析。所有提取物对 MCF7 和 MCF7/HER2 细胞均表现出低细胞毒活性或没有细胞毒活性。DCM 提取物对两种癌细胞都表现出弱细胞毒活性,IC 50 值为 220 µg/ml。然而,DCM 和 EA 提取物对两种细胞均具有与 Dox 协同的细胞毒性作用,具有很强的协同作用特征。两种提取物均诱导细胞周期在 DCM 的 S 期和 G1 期积累,而 EA 的积累则在 G1 期。两种提取物也与 Dox 一起引起细胞凋亡,但调节细胞凋亡的方式不同。总之,V. amygdalina 的 DCM 和 EA 提取物通过调节细胞周期和诱导细胞凋亡,为腔内乳腺癌提供了与 Dox 协同抗癌作用的潜在作用。
ATJ 酒精到喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 棕榈油原油 CTBE 巴西生物乙醇科学技术实验室。 DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精炼棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井泵 WTWa 井唤醒
ATJ 酒精喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 粗棕榈油 CTBE 巴西生物乙醇科学技术实验室。 DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能值 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精制棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井至泵 WTWa 井至唤醒
梭菌属菌株用于生产各种增值产品,包括燃料和化学品。任何商业上可行的生产工艺的开发都需要菌株和发酵工艺开发策略的结合。梭菌属的菌株开发可以通过随机诱变和靶向基因改造方法实现。然而,由于缺乏有效的基因组和转录组工程工具,通过靶向基因改造方法对梭菌属的菌株进行改良具有挑战性。最近,已经开发出各种合成生物学工具来促进产溶剂梭菌的菌株工程。在这篇综述中,我们整合了产溶剂梭菌基因组和转录组工程工具箱开发的最新进展。在这里,我们回顾了采用移动 II 组内含子、pyrE 等位基因交换和 CRISPR/Cas9 的基因组工程工具及其在梭菌属菌株开发中的应用。接下来,在梭菌菌株工程的背景下,还讨论了转录组工程工具,例如非翻译区 (UTR) 工程和合成 sRNA 技术。应用任何这些讨论的技术都将促进梭菌的代谢工程,以开发具有所需功能属性的改良菌株。这可能导致开发出一种经济可行的丁醇生产工艺,提高滴度、产量和生产率。
ABS大约95%至99%的化学效应是符合嗅觉的贡献,而味道是造成重新启示的味道。患有厌食症的人无法发现气味。除了获得或先天性外,它还可以是临时的或永久的。可以通过嗅觉路径在任何级别的病理状况中引起嗅觉疾病。这些干扰可能在多个级别发生。导电或感觉性缺陷是可以用来使它们进行的两种类别。在归类为导电性的疾病中,也称为运输障碍,在向嗅觉神经上皮细胞传输气味刺激时会引起中断。可以通过任何机械阻塞来阻止气味到达嗅觉神经元的任何机械障碍物。几个炎症过程可能会导致这种观察,包括导致粘液塞或鼻息肉的简单感染。某些神经系统原因有可能引起该疾病。更中央大脑结构受到感觉神经异常的影响。已经创建了嗅觉功能的测试,以对嗅觉灵活性进行有效的测量。这些气味测试检查了气味感知和气味鉴定的阈值。丁醇阈值测试,“宾夕法尼亚大学的气味识别测试(UPSIT)”和“ Sniffin'Sticks”测试是此类别中的一些测试。在这篇综述中,嗅觉差异提出了详细的文献调查。关键字:嗅觉疾病;厌食低血症;气味测试
纳米颗粒和苯授精方法。对水甲醇提取物的LC -ESI -MS/MS分析显示,长石酸(278.150 µg L -1)和Luteolin(112.214 µg L -1)含有高含量。乙酸乙酯馏分的主要成分是食道酸(1502.228 µg l -1),epigallocatechin(1204.629 µg L -1)和儿茶素(410.925 µg L -1)。在N-丁醇馏分中,shikimic Acid(2425.644 µg L -1)和长石酸(220.417 µg L -1)是主要成分。基于抗氧化剂结果,提取物和馏分表现出显着的抗氧化活性。最有效的是乙酸乙酯馏分,在所有使用的测试中,IC 50值低于10 µg mL -1。关于抑制胆碱酯酶,水甲醇提取物对乙酰胆碱酯酶(IC 50 = 22.82 µg mL -1)和丁乙烯酯酶表现出有趣的抑制作用(IC 50 = 10.70 µg ml -1)。提取物和分数显示出对α淀粉酶和α葡萄糖苷酶的显着抑制作用,IC 50分别为10.67至28.55 µg mL -1和3.45至5.05 µg mL -1。对接研究表明,长石酸对α-糖苷酶的结合能表现出最有利的结合能。相反,儿茶素在ACHE,BCHE和α-淀粉酶方面表现出了出色的结合能。总而言之,该物种表现出明显的抗氧化能力和酶的抑制作用,这表明其在预防与氧化应激有关的许多疾病中的潜在应用。
Perfluorooctanoic acid Benomyl Cloprop Malathion Tembotrione Reserpine Methotrexate Warfarin 6-P ropyl-2-thiouracil Fenamiphos Caffeine Methyl parathion Triamcinolone Tebupirimfos Spiroxamine Tetracycline Carbofuran Azoxystrobin Fipronil Emamectin benzoate Lindane Imidacloprid MGK Perfluorooctanesulfonamide Simvast atin Indoxacarb Endosulfan Diazinon Boscalid P hosmet Tris(1,3-dichloro-2-propyl) phosphate Bisphenol AF Pyraclostrobin Lovastatin 5,5-Diphenylhydantoin Fost hiazate Coumaphos P horate Cytarabine hydrochloride Pirimiphos-methyl Tamoxifen Bisphenol B Chlorpyrifos-methyl Triphenyl phosphate Auramine hydrochloride Bensulide 2,2-Bis(4-hydroxyphenyl)-1,1,1-trichloroethane Flusilazole 17beta-Estradiol M olinate Mifepristone Tri-allate Rotenone三氯糖丁醇丁酰丁氧化物氟替纳乙烯四甲酸乙酸酯氟氧赛tebuconazole甲氧氯甲苯甲苯甲甲基甲基甲基甲基terbufos氯普里氏菌dieldrifos dieldieldrifos dieldieldrifos dieldrifos dieldieldrin七氯离聚蛋白P,p'-ddd bif ensfenrin Esfenrase二乙基苯甲酸苯甲酸烯二酚苄氯糖蛋白tefluthrin Tefluthrin diphenhydramine盐酸盐酸盐盐酸非洲苯二苯甲酸苯二烯mirex mirex mirex bisphenol-a p,p'-ddt o,p'-ddt o,p'-ddt o,p'- ddt o,p'-p'- ddt benz an an an an an an an an an an an an an an an an an an an an an an an an an and and and苯并(b)氟苯二乙基苯甲酸苯甲酸酯
构成梭菌属的革兰氏阳性、产芽孢、专性厌氧厚壁菌种具有广泛的原料消耗能力并产生增值代谢产物,但基因操作困难,限制了它们的广泛吸引力。CRISPR-Cas 系统最近已应用于梭菌种,主要使用 Cas9 作为反选择标记与基于质粒的同源重组结合。CRISPR 干扰是一种通过精确靶向核酸酶缺陷型 Cas 效应蛋白来降低特定基因表达的方法。在这里,我们开发了一种基于 dCas12a 的 CRISPR 干扰系统,用于抑制多种中温梭菌种的转录基因。我们表明,与源自其他细菌的 CRISPR Cas 系统相比,由于梭菌种中的 GC 含量低,基于新凶手弗朗西斯菌 Cas12a 的系统具有更广泛的适用性。我们证实,丙酮丁醇梭菌中靶基因的转录水平降低了 99% 以上,巴氏梭菌中靶基因的转录水平降低了 75% 以上。我们还通过使用单个合成 CRISPR 阵列证实了多重抑制,靶基因表达降低了 99%,并阐明了其表达降低的独特代谢特征。总体而言,这项工作为无需基因编辑的高通量遗传筛选奠定了基础,而基因编辑是梭菌群落当前使用的筛选方法的一个关键限制。