1 麻省理工学院材料科学与工程系,美国马萨诸塞州剑桥 02139 2 魏茨曼科学研究所化学与生物物理系,以色列雷霍沃特 76100 3 博洛尼亚 INSTM-UdR 工业化学系“Toso Montanari”,意大利博洛尼亚 40129 4 林雪平大学物理、化学和生物系(IFM),瑞典林雪平 SE-581 83。 5 Mork Family 南加州大学化学工程与材料科学系,美国加利福尼亚州洛杉矶 90089 6 魏茨曼科学研究所分子化学与材料科学系,以色列雷霍沃特 76100 7 Ming Hsieh 南加州大学电气与计算机工程系,美国加利福尼亚州洛杉矶 90089 8 南加州大学纳米成像核心卓越中心 (CNI),美国加利福尼亚州洛杉矶 90089(日期:2024 年 10 月 11 日)
申请人如需确认其申请结果,请参考以下内容。只有被选中的申请人才会收到联系和通知。(外部(非基础)申请人除外,他们收到
摘要 一种可能表现出具有不同光电特性的多个晶相的材料可用作相变存储材料。当两个竞争相具有较大的电子结构对比度并且相变过程为无扩散和马氏体时,灵敏度和动力学可以增强。在这项工作中,我们从理论和计算上说明了这种相变可能发生在 IV 族单硫属化物 SnSe 化合物中,该化合物可以存在于量子拓扑平凡的 Pnma -SnSe 和非平凡的 Fm 3 m -SnSe 相中。此外,由于这些相的电子能带结构差异,揭示了 THz 区域的光学响应的巨大差异。根据驱动电介质的热力学理论,提出了使用具有选定频率、功率和脉冲持续时间的线性偏振激光进行光机械控制以触发拓扑相变。我们进一步估计了驱动可在皮秒时间尺度上发生的无障碍跃迁的临界光电场。这种光致动策略不需要制造机械接触或电引线,只需要透明度。我们预测,伴随大熵差的光驱动相变可用于“光热”冷却装置。
a Max Mousseron 生物分子研究所,UMR5247 CNRS,蒙彼利埃大学,ENSCM,药学院,15 avenue Charles Flahault,34093 Montpellier cedex 5,法国。 b 列日大学蛋白质工程中心生物大分子实验室,Allée du 6 août B6,Sart-Tilman,4000 列日,比利时。 c 意大利锡耶纳大学医学生物技术系,I-53100 锡耶纳。来自结构生物学研究所 - Jean-Pierre Ebel,UMR5075 CNRS,CEA,约瑟夫傅立叶大学,41 rue Jules Horowitz,38027 Grenoble cedex 1,法国。 e EMBL Outstation c/o DESY,Notkestrasse 85,D-22603 汉堡,德国。 f 安纳多鲁大学药学院药物化学系,26470 埃斯基谢希尔,土耳其。 g 德国尤斯图斯李比希大学跨学科研究中心生物化学与分子生物学系主任,Heinrich-Buff-Ring 26-32,D-35392 吉森,德国。 h UMR8226,法国国家科研中心,皮埃尔和玛丽居里大学,物理化学生物学研究所,皮埃尔和玛丽居里街 13 号,75005 巴黎,法国。 i UMR8261,法国国家科研中心,巴黎狄德罗大学,物理化学生物学研究所,皮埃尔和玛丽居里街 13 号,75005 巴黎,法国。 1 现地址:Symbiose Biomaterials SA,GIGA Bât. B34, 1 avenue de l'Hôpital, 4000 列日, 比利时。 2 现地址:法国克莱蒙费朗化学研究所,UMR6296 CNRS,克莱蒙奥弗涅大学,63000 克莱蒙费朗,法国。 3 现地址:昆士兰大学化学与分子生物科学学院,圣卢西亚,布里斯班,昆士兰州 4072,澳大利亚。 4 现地址:CERN,HSE/SEE/SI,CH-1211 Geneva 23,瑞士。 *通讯作者:电话:+33-(0)4 11 75 96 03;传真:+33-(0)4 11 75 96 41。电子邮件地址:jean-francois.hernandez@umontpellier.fr (J.-F. Hernandez); laurent.gavara@umontpellier.fr(L.加瓦拉)。
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。
时,并且学术论文揭示了基因交换在自然界中发生,而这些物种是微生物,是微生物源自供体,宿主和表达质粒的微生物,用于生产的微生物中的DNA的质粒属于这些物种。 1)在同行评审论文中出版2)由多位专家(例如学术社会的职位论文)所证明的论文。
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。