多年来,法国国际关系研究所(Ifri)团队一直密切关注中美欧战略三角的变化,以预测全球化的进程。2019年,在索邦大学举办的庆祝Ifri成立40周年的会议主题为“中美竞争背景下的欧洲未来”。2020年,在法国封锁之初,七位研究人员共同撰写的一项研究强调,疫情加速了先前确定的趋势,欧盟既面临着“迅速边缘化”的风险,也面临着“前所未有的机遇:团结和协调全世界渴望避免陷入中美竞争的国家”。 1 三年后,本研究由十六篇文章组成,是在奥拉夫·朔尔茨访华(2022 年 11 月)之后进行的,早于埃马纽埃尔·马克龙的访问。
多年来,法国国际关系研究所(Ifri)团队一直密切关注中美欧战略三角的变化,以预测全球化的进程。2019年,在索邦大学举办的庆祝Ifri成立40周年的会议的重点是“中美竞争背景下的欧洲未来”。2020年,在法国封锁之初,七位研究人员共同撰写的一项研究强调,疫情加速了先前确定的趋势,欧盟既面临着“迅速边缘化”的风险,也面临着“前所未有的机遇:团结和协调全世界渴望避免陷入中美竞争的国家”。 1 三年后,本研究由十六篇文章组成,是在奥拉夫·舒尔茨访华(2022 年 11 月)之后,在埃马纽埃尔·马克龙访华(2023 年 4 月)之前发表的。值得注意的是,这是在罕见的地缘政治和地缘经济冲击开始一年后:俄罗斯入侵乌克兰。
自 2019 年 5 月起,测量基础 SI 基于选定基本常数的固定值。这使得自 1990 年以来与 SI 分离的电气计量重新回归到通用单位制中。通过约瑟夫森效应实现量化电压和通过量子霍尔效应实现量化电阻的实际实现并没有改变,但现在结果直接与基本电荷 e 和普朗克常数 h 的固定值组合有关。利用欧姆定律,这也可以实现量化电流。但新的 SI 还允许直接直观地实现电流:通过重复转移单个量化电荷 e 来产生量化电流。近年来,通过精确的单电子泵浦在实现这种实现方面取得了巨大进展。比较这些不同实现产生的电流,即关闭所谓的量子计量三角,将允许测试电量子计量的基础。在我的演讲中,我将介绍电量子计量和新 SI,回顾单电子泵送的进展并讨论量子计量三角的现状。
职位描述沿海和海洋生物多样性顾问(4T)项目描述印度尼西亚,马来西亚,巴布亚新几内亚,菲律宾,菲律宾,所罗门群岛和帝汶 - 所谓的珊瑚三角(CT)的沿海和海洋地区 - 代表海洋生物多样性的全球全球生物多样性中心。相关的生态系统商品和服务提供了当地生计和国家蓝色经济体的来源,但与此同时,由于人类和气候变化引起的压力因素,它们越来越有风险。珊瑚三角的巨大规模及其复杂的生态连通性模式需要大规模的管理和保护其海洋资源的方法。在共同实施的珊瑚礁,渔业和粮食安全(CTI-CFF)的共同实施的珊瑚三角举措下,六个CT国家的政府以及一系列国家和地区伙伴的政府已经发起了针对性的努力,尤其着重于三个跨界海景。目前,这些处于不同的阶段,在关键政策框架和能力中剩下差距。区域计划“针对珊瑚三角的海洋和沿海弹性解决方案”(SOMACORE)旨在支持国家和地区利益相关者在六个CT国家的多层次方法中扩大验证的实践的努力。每个国家和海景的预见措施和活动包括对制定和实施部门战略和行动计划的支持,以及在地方和国家一级促进跨部门合作。扩展成功解决方案是该计划的核心,并且通过在不同层面的工作和不同利益相关者群体的参与得到支持。知识交流,联合学习,能力发展,技术支持和政策倡导旨在促进良好实践的复制。giz负责协调该计划的产出和结果的努力,并与六个CT国家的政府,珊瑚礁珊瑚礁,渔业和粮食安全(CTI-CFF)的珊瑚三角倡议的区域秘书处(CTI-CFF)以及全球范围内,国家和地区开展业务。在菲律宾,GIZ与生物多样性和渔业部门的关键参与者紧密合作,特别是与环境与自然资源部的生物多样性管理局,以及农业部的渔业和水生资源局,重点介绍了基于生态系统资源管理和基于生态资源的基于地区资源管理的菲律宾菲律宾组合中的有效地区的保护惯例。主要角色沿海和海洋生物多样性协调员/顾问将协调基于生态系统的资源管理活动在菲律宾的实施,重点是Sulu-Sulawesi海景。此角色包括对海洋保护区和MPA网络的技术和行政支持的贡献,在国家和地方层面威胁和迁徙海洋利益相关者。
肿瘤抑制因子 p53 在致癌应激下介导的抗肿瘤机制是我们的身体对抗癌症发生和发展的最强大武器。因此,具有显著 p53 调节活性的因子一直是癌症研究界关注的焦点。其中,MDM2 和 ARF 被认为是最具影响力的 p53 调节因子,因为它们分别具有抑制和激活 p53 功能的能力。MDM2 通过促进泛素化和蛋白酶体介导的 p53 降解来抑制 p53,而 ARF 通过与 MDM2 物理相互作用以阻止其访问 p53 来激活 p53。这种对 p53-MDM2-ARF 功能三角的传统理解指导了过去 30 年来 p53 研究的方向以及基于 p53 的治疗策略的发展。在此期间,我们对这个三角关系的了解不断增加,特别是通过识别 p53 独立的 MDM2 和 ARF 功能,发现了许多未被充分重视的连接这三种蛋白质的分子机制。通过识别它们之间的拮抗和协同关系,我们对利用这些关系开发有效癌症疗法的考虑需要相应地更新。在这篇综述中,我们将重新审视有关 p53-MDM2-ARF 肿瘤调节机制的传统观点,重点介绍有助于现代看待它们关系的有影响力的研究,并总结针对该途径进行有效癌症治疗的持续努力。对 p53-MDM2-ARF 网络的重新认识可以带来创新方法来开发新一代基因信息和临床有效的癌症疗法。
・东盟生物多样性中心(2023)。东盟生物多样性前景3。从https://abo3.aseanbiodiverity.org/・Baloloy A.B.检索等。(2023)。绘制菲律宾的多年红树林变化:植被范围以及与人类和气候相关因素的影响。in:Leal Filho,W.,Kovaleva,M.,Alves,F.,Abubakar,I.R。(eds)气候变化策略:处理适应不断变化的气候的挑战。气候变化管理。Springer,Cham。 https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。Springer,Cham。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。(2023)。不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。in icimod(P. Wester等人[eds。]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。123–163)。icimod。https://doi.org/10.53055/icimod.103 ・Corcino R.等。(2023)。菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。海洋科学区域研究(2024)。一个监测保护区和其他基于区域的保护措施的生物多样性的框架。IUCN WCPA技术报告系列7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。(2023)。(2023)。Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。全球生物多样性观察系统,以团结监测和指导行动,《自然生态与进化》第7期,第2173页。https://doi.org/10.1038/s41559-023-023-02263-x,环境科学领域,11。https://doi.org/10.3389/fenvs.2023.1281536 ・Hughes A.C.(2023)。帖子 - 2020年全球生物多样性框架:我们是如何到达这里的,下一个我们要去哪里?综合保护2(1)1-9。 https://doi.org/10.1002/inc3.16 ・ icimod(2023)。印度教库什·喜马拉雅山的水,冰,社会和生态系统:看法。(P. Wester,S。Chaudhary,N。Chettri,M。Jackson,A。Maharjan,S。Nepal&J.F。Steiner [eds。]。icimod。https://doi.org/1053055/icimod.1028 ・Kass J.等。 (2023)。 生物多样性建模的进步将改善对大自然对人的贡献的预测。 生态与进化的趋势。 https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/1053055/icimod.1028 ・Kass J.等。(2023)。生物多样性建模的进步将改善对大自然对人的贡献的预测。生态与进化的趋势。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。(2023)。生态系统的红色列表,西方珊瑚三角的红树林。ecoevorxiv。https://doi.org/10.32942/x21k5p ・Mori A.S.等。(2023)。可持续性挑战,机会和解决方案,用于长期生态系统观察。皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。(2023)。审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。等。(2024)。(2023)。生态与环境杂志(印刷中)・蓬普特A.J.靶向站点保护以提高新的全球生物多样性目标的有效性,一个地球,7(1):11-17。 https://doi.org/10.1016/j.oneear.2023.12.007。salmo,S。G.等。联合国在生态系统恢复的十年中的东南亚红树林。海洋科学领域。https://doi.org/10.3389/fmars.2023.1341796 ・Shin N.等。(2023)。在1807 - 1838年的Kakuson日记中,来自日本Kanazawa的采矿植物物候记录。国际生物气象学杂志。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。 (2024)。 观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解? 正面。 环境。 SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。(2024)。观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解?正面。环境。SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。SCI。12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。(2024)。在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。正面。维持。旅行。3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。12。在线。https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://www.biodiverity-science.net/cn/article/shownewarticle.do。▶生活世界特刊,2023年。08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。・ Trisurat Y.等。(2023)。(2023)。气候变化对泰国的物种组成和植物区域的影响。多样性15,1087。https://doi.org/10.3390/d15101087 wee A.等。在东南亚红树林恢复中进行环境DNA(EDNA)的前景和挑战。海洋科学领域。https://doi.org/10.3389/fmars.2023.1033258演示材料都可以通过Apbon网站访问:http://wwwww.esabii.biodic.go.go.go.jp/ap-bon/ap-bon/index.htex.htex.htex.html